Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Spukhafte Fernwirkung“ im Physik-Gebäude: Forscher entwickeln Baustein für Quanten-Repeater

22.05.2018

Physikern der Universität des Saarlandes ist es gelungen, ein Atom mit einem Lichtquant (Photon) im so genannten Telekom-Wellenlängenbereich zu verschränken. Damit können Quanteninformationen mittels Photonen verlustarm über lange Strecken transportiert werden. Die Ergebnisse fanden bei Quantenforschern bereits große Aufmerksamkeit und wurden jetzt in Nature Communications veröffentlicht.

Die Kommunikation mit Quantenzuständen ist extrem sicher, da jedes Abhören das Übertragungssignal stören würde und es daher immer entdeckt wird. Aus demselben Grund ist es aber schwierig, die Informationen über weite Strecken zu transportieren:


Das mit der Entfernung schwächer werdende Signal kann nämlich nicht einfach von Signalverstärkern, so genannten Repeater-Stationen, empfangen und verstärkt weitergesendet werden, wie dies in der klassischen Telekommunikation geschieht.

Hierfür muss ein anderes Prinzip verwendet werden: der Quanten-Repeater. Dabei wird zuerst eine so genannte Quantenverschränkung über kürzere Distanzen erzeugt und dann über immer längere Abstände weiter verbreitet.

Eine Quantenverschränkung zwischen zwei Teilchen besteht, wenn man den gemeinsamen Zustand der beiden Teilchen mit einer festen Beziehung genau beschreiben kann, jedes Teilchen für sich gemessen jedoch in einem zufälligen, nicht vorhersagbaren Zustand gefunden wird. Eine Möglichkeit, dies zu realisieren, besteht darin, einzelne Atome und einzelne Photonen (Lichtquanten) miteinander zu verschränken.

Das geschieht in den Laboren von Prof. Jürgen Eschner mithilfe einzelner, durch Laser-Impulse kontrollierter Kalzium-Atome in einer Ionenfalle (https://idw-online.de/de/news614634). Für die Wellenlänge, bei der dies gut funktioniert (854 Nanometer), existieren jedoch keine Glasfasern zur verlustarmen Übertragung über weite Strecken; stattdessen möchte man die Photonen im so genannten Telekom-Wellenlängenbereich (1300 bis 1550 Nanometer) versenden. Die Technologie für die Umwandlung der Photonen in diesen Bereich, den Quanten-Frequenzkonverter, hat Prof. Christoph Becher mit seiner Arbeitsgruppe entwickelt (https://idw-online.de/de/news499868).

Zusammen haben beide Gruppen jetzt demonstriert, dass das Telekom-Photon nach der Frequenzkonversion noch immer mit dem Atom verschränkt ist, welches das ursprüngliche Photon ausgesandt hat. Zudem haben die Forscher gezeigt, dass die hohe Qualität der Verschränkung praktisch unverändert bleibt.

Faszinierend dabei ist, dass der gemeinsame Quantenzustand aus mikroskopischen Teilchen (einzelnem Atom und einzelnem Telekom-Photon) sich über mehrere Etagen des Saarbrücker Physikgebäudes erstreckt. „Einer Verschränkung über 20 Kilometer Distanz steht dann eigentlich nichts mehr im Weg“, kommentiert Matthias Bock, Doktorand in der Quantentechnologie und Erstautor der aktuellen Studie.

Die Ergebnisse sind ein wichtiger Schritt, um Quantentechnologie in die konventionelle Telekommunikation zu integrieren; dafür werden die Arbeiten der Gruppen an der Universität des Saarlandes vom Bundesministerium für Bildung und Forschung gefördert.

Beispiel für Quantenverschränkung:
Bei Quantenbits – zum Beispiel Atomen mit zwei Energiezuständen für Elektronen oder Photonen mit zwei Schwingungsrichtungen – kann der individuelle Zustand durch einen Punkt auf einer Kugeloberfläche veranschaulicht werden. Bei einer Messung wird ein einzelnes Quantenbit also (unvorhersagbar) irgendwo auf der Kugeloberfläche angetroffen.

Das andere, das mit ihm verschränkt ist, wird dann aber immer im gegenüberliegenden Punkt auf der Kugel gefunden. Diese Korrelation kann auch über große Entfernung existieren. Dieses von Einstein „spukhafte Fernwirkung“ genannte Phänomen gehört zu den schwer vorstellbaren Besonderheiten der Quantenphysik, ist aber vielfach experimentell bestätigt worden.

Link zur Studie: http://www.nature.com/ncomms (DOI: 10.1038/s41467-018-04341-2)

Kontakt:
Prof. Dr. Christoph Becher
Tel.: 0681 302-2466
E-Mail: christoph.becher@physik.uni-saarland.de

Prof. Dr. Jürgen Eschner
Tel.: 0681 302-58016
E-Mail: juergen.eschner@physik.uni-saarland.de

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681 302-2601) richten.

Gerhild Sieber | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics