Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sprengstoff explodiert in Zeitlupe

13.08.2009
Der Sprengstoff TNT explodiert auf molekularer Ebene viel langsamer als bisher angenommen. Zu diesem überraschenden Ergebnis kamen Wissenschaftler um Prof. Paul Scheier vom Institut für Ionenphysik und Angewandte Physik der Uni Innsbruck. Mit einem neuen Verfahren konnten sie den chemischen Prozess in Zeitlupe beobachten.

Die Innsbrucker Forschungen liefern unter anderem für die praktische Arbeit von Entminungsdiensten die wissenschaftliche Grundlage. Bereits bisher werden Minen und Bomben abgekühlt, bevor mit der Entschärfung begonnen wird. TNT (Trinitrotoluol) ist einer der meist verwendeten, synthetisch gefertigten Sprengstoffe und zählt zu den wichtigsten militärischen Explosivstoffen.

Wird dem Sprengstoff Energie zugeführt, zerfällt die instabile Substanz in energieärmere Verbindungen und setzt dabei enorme Mengen an Energie frei. Weil Sauerstoff als Brennstoff für die Explosion bereits in das Molekül eingebaut ist, kann sich die Detonation von TNT mit einer gewaltigen Geschwindigkeit von mehreren tausend Metern pro Sekunde ausbreiten.

Wie Wissenschaftler um Prof. Paul Scheier nun aber zeigen konnten, dauert das eigentliche Zünden des Sprengstoffs, der chemische Zerfallsprozess des Moleküls, sehr viel länger als bisher vermutet. „Nach unseren Beobachtungen handelt es sich dabei um einen für molekulare Verhältnisse sehr langsamen Prozess“, sagt Scheier. „Von der Anlagerung eines Elektrons bis zum Zerfall des Moleküls vergehen mehrere Mikrosekunden. Auf molekularer Ebene ist das eine halbe Ewigkeit.“

Zeitlupenstudie

Um den Zerfall von TNT zu studieren, hat Paul Scheier mit seinem Team den Explosionsprozess des Sprengstoffs quasi eingefroren. Dazu brachten die Forscher die explosiven Moleküle in ultrakalte Heliumtröpfchen ein und kühlten sie damit extrem stark ab. Dann beschossen sie das TNT mit langsamen Elektronen und analysierten die Zerfallsprozesse in einem Massenspektrometer. „Die Hülle aus Heliumatomen friert die – durch das Elektron ausgelöste – Explosion ein, und wir beobachten in unserem Massenspektrometer keine Zerfallsprodukte“, erklärt Scheier. Dieses Phänomen überraschte die Wissenschaftler, weil ein früheres Experiment ohne die Heliumtröpfchen einen sehr raschen Zerfall des Sprengstoffs zeigte. „Ohne Helium strukturiert sich das Molekül nach der Anlagerung des Elektrons langsam um und einzelne Stücke brechen nach und nach ab. So entstehen neutrale Teilchen mit sehr hoher Bindungsenergie. Die überschüssige Energie wird an die Umwelt abgegeben und hält die Reaktion in Gang“, erläutert Scheier. „Weil diese Energie in unserem Experiment vom Helium aufgenommen wird, können wir den Explosionsvorgang dramatisch verlangsamen und schrittweise genau beobachten.“ Diese Ergebnisse haben die Innsbrucker Forscher nun in der Fachzeitschrift „Physical Chemistry Chemical Physics“ veröffentlicht. Unterstützt wurden sie bei Ihren Forschungen vom Österreichischen Wissenschaftsfonds (FWF), der Österreichischen Akademie der Wissenschaften (ÖAW) und der Europäischen Kommission.

Der an der Universität Innsbruck entwickelte Apparat zur Analyse von Molekülen in ultrakalten Heliumtröpfchen ist weltweit einzigartig. Als nächste Substanz will Scheier das hochbrisante Royal Demolition Explosive (RDX) analysieren. Neben der Untersuchung von Sprengstoffen kann das Instrument zur Erforschung sämtlicher Arten molekularer Prozesse bei instabilen Substanzen eingesetzt werden. „Wir können hier sehr elegant die einzelnen Zerfallsprozesse studieren“, freut sich der Physiker. Die Innsbrucker Gruppe hat bisher unter anderem im Auftrag des britischen Verteidigungsministeriums die Eigenschaften von Sprengstoffen erforscht und auch international beachtete Beiträge zur Detektierung gefährlicher Explosivstoffe geleistet. Die Ergebnisse all dieser Grundlagenforschungen fließen in die tägliche Praxis von Entminungsdiensten, aber auch in die Verwendung von Sprengstoffen im Bergbau sowie im Straßenbau ein.

Publikation: Electron Q1 attachment to trinitrotoluene (TNT) embedded in He droplets: complete freezing of dissociation intermediates in an extended range of electron energies. Mauracher A, Schöbel H, Ferreira da Silva F, Edtbauer A, Mitterdorfer C, Denifl S, Märk TD, Illenberger E, Scheier P. Physical Chemistry Chemical Physics 2009.

Kontakt:

Univ.-Prof. Dr. Paul Scheier
Institut für Ionenphysik und Angewandte Physik
Technikerstrasse 25, A-6020 Innsbruck
Telefon: +43(0)512/507 6243
Mail: paul.scheier@uibk.ac.at
Mag.a Gabriele Rampl
Public Relations Ionenphysik
Telefon: +43 650 2763351
Mail: office@scinews.at
Web: http://www.scinews.at

Gabriele Rampl | scinews.at
Weitere Informationen:
http://dx.doi.org/10.1039/b908192e
http://www.uibk.ac.at/ionen-angewandte-physik/media/photos.html
http://www.uibk.ac.at/ionen-angewandte-physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht ALMA beginnt Beobachtung der Sonne
18.01.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt
18.01.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik