Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sprengstoff explodiert in Zeitlupe

13.08.2009
Der Sprengstoff TNT explodiert auf molekularer Ebene viel langsamer als bisher angenommen. Zu diesem überraschenden Ergebnis kamen Wissenschaftler um Prof. Paul Scheier vom Institut für Ionenphysik und Angewandte Physik der Uni Innsbruck. Mit einem neuen Verfahren konnten sie den chemischen Prozess in Zeitlupe beobachten.

Die Innsbrucker Forschungen liefern unter anderem für die praktische Arbeit von Entminungsdiensten die wissenschaftliche Grundlage. Bereits bisher werden Minen und Bomben abgekühlt, bevor mit der Entschärfung begonnen wird. TNT (Trinitrotoluol) ist einer der meist verwendeten, synthetisch gefertigten Sprengstoffe und zählt zu den wichtigsten militärischen Explosivstoffen.

Wird dem Sprengstoff Energie zugeführt, zerfällt die instabile Substanz in energieärmere Verbindungen und setzt dabei enorme Mengen an Energie frei. Weil Sauerstoff als Brennstoff für die Explosion bereits in das Molekül eingebaut ist, kann sich die Detonation von TNT mit einer gewaltigen Geschwindigkeit von mehreren tausend Metern pro Sekunde ausbreiten.

Wie Wissenschaftler um Prof. Paul Scheier nun aber zeigen konnten, dauert das eigentliche Zünden des Sprengstoffs, der chemische Zerfallsprozess des Moleküls, sehr viel länger als bisher vermutet. „Nach unseren Beobachtungen handelt es sich dabei um einen für molekulare Verhältnisse sehr langsamen Prozess“, sagt Scheier. „Von der Anlagerung eines Elektrons bis zum Zerfall des Moleküls vergehen mehrere Mikrosekunden. Auf molekularer Ebene ist das eine halbe Ewigkeit.“

Zeitlupenstudie

Um den Zerfall von TNT zu studieren, hat Paul Scheier mit seinem Team den Explosionsprozess des Sprengstoffs quasi eingefroren. Dazu brachten die Forscher die explosiven Moleküle in ultrakalte Heliumtröpfchen ein und kühlten sie damit extrem stark ab. Dann beschossen sie das TNT mit langsamen Elektronen und analysierten die Zerfallsprozesse in einem Massenspektrometer. „Die Hülle aus Heliumatomen friert die – durch das Elektron ausgelöste – Explosion ein, und wir beobachten in unserem Massenspektrometer keine Zerfallsprodukte“, erklärt Scheier. Dieses Phänomen überraschte die Wissenschaftler, weil ein früheres Experiment ohne die Heliumtröpfchen einen sehr raschen Zerfall des Sprengstoffs zeigte. „Ohne Helium strukturiert sich das Molekül nach der Anlagerung des Elektrons langsam um und einzelne Stücke brechen nach und nach ab. So entstehen neutrale Teilchen mit sehr hoher Bindungsenergie. Die überschüssige Energie wird an die Umwelt abgegeben und hält die Reaktion in Gang“, erläutert Scheier. „Weil diese Energie in unserem Experiment vom Helium aufgenommen wird, können wir den Explosionsvorgang dramatisch verlangsamen und schrittweise genau beobachten.“ Diese Ergebnisse haben die Innsbrucker Forscher nun in der Fachzeitschrift „Physical Chemistry Chemical Physics“ veröffentlicht. Unterstützt wurden sie bei Ihren Forschungen vom Österreichischen Wissenschaftsfonds (FWF), der Österreichischen Akademie der Wissenschaften (ÖAW) und der Europäischen Kommission.

Der an der Universität Innsbruck entwickelte Apparat zur Analyse von Molekülen in ultrakalten Heliumtröpfchen ist weltweit einzigartig. Als nächste Substanz will Scheier das hochbrisante Royal Demolition Explosive (RDX) analysieren. Neben der Untersuchung von Sprengstoffen kann das Instrument zur Erforschung sämtlicher Arten molekularer Prozesse bei instabilen Substanzen eingesetzt werden. „Wir können hier sehr elegant die einzelnen Zerfallsprozesse studieren“, freut sich der Physiker. Die Innsbrucker Gruppe hat bisher unter anderem im Auftrag des britischen Verteidigungsministeriums die Eigenschaften von Sprengstoffen erforscht und auch international beachtete Beiträge zur Detektierung gefährlicher Explosivstoffe geleistet. Die Ergebnisse all dieser Grundlagenforschungen fließen in die tägliche Praxis von Entminungsdiensten, aber auch in die Verwendung von Sprengstoffen im Bergbau sowie im Straßenbau ein.

Publikation: Electron Q1 attachment to trinitrotoluene (TNT) embedded in He droplets: complete freezing of dissociation intermediates in an extended range of electron energies. Mauracher A, Schöbel H, Ferreira da Silva F, Edtbauer A, Mitterdorfer C, Denifl S, Märk TD, Illenberger E, Scheier P. Physical Chemistry Chemical Physics 2009.

Kontakt:

Univ.-Prof. Dr. Paul Scheier
Institut für Ionenphysik und Angewandte Physik
Technikerstrasse 25, A-6020 Innsbruck
Telefon: +43(0)512/507 6243
Mail: paul.scheier@uibk.ac.at
Mag.a Gabriele Rampl
Public Relations Ionenphysik
Telefon: +43 650 2763351
Mail: office@scinews.at
Web: http://www.scinews.at

Gabriele Rampl | scinews.at
Weitere Informationen:
http://dx.doi.org/10.1039/b908192e
http://www.uibk.ac.at/ionen-angewandte-physik/media/photos.html
http://www.uibk.ac.at/ionen-angewandte-physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise