Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spiralförmig geordnete Elektronen- und Kernspins in Quantendrähten

11.02.2014
Physikern der Universität Basel ist es gelungen, in einem Quantendraht eine spontane magnetische Ordnung von Kern- und Elektronenspins bei Temperaturen von 0,1 Kelvin zu beobachten.

Bisher war dies meist erst bei Temperaturen im Mikrokelvin-Bereich möglich. Durch die Kopplung von Kernen und Elektronen entsteht ein neuer Zustand der Materie, bei der sich eine Kernspinordnung schon bei einer viel höheren Temperatur einstellt.


Spiralförmige Ordnung: Die Spins der Elektronen und der Atomkerne (rot) sind entlang des Quantendrahts in Form einer Helix ausgerichtet (angezeigt durch das blaue Band).

Illustration: B. Braunecker, P. Simon, and D. Loss, Phys. Rev. B 80, 165119 (2009)

Die Ergebnisse stimmen weitgehend mit einem theoretischen Modell überein, das vor wenigen Jahren in Basel entwickelt worden war, wie die Forscher in der Fachzeitschrift «Physical Review Letters» berichten.

Für ihr Experiment benutzten die Forscher um Prof. Dominik Zumbühl vom Departement Physik der Universität Basel sogenannte Quantendrähte aus dem Halbleiterwerkstoff Galliumarsenid. Dabei handelt es sich um eindimensionale Strukturen, bei denen sich Elektronen nur in einer Raumrichtung bewegen können.

Bei Temperaturen über zehn Kelvin wiesen die Quantendrähte eine universelle, quantisierte Leitfähigkeit auf, deren Wert auf einen ungeordneten Zustand der Elektronenspins hinweist. Kühlten die Forscher die Drähte mit flüssigem Helium aber auf eine Temperatur unter hundert Millikelvin (0,1 Kelvin) ab, zeigten die elektronischen Messungen einen um die Hälfte reduzierte Leitfähigkeit, was auf eine kollektive Ausrichtung der Elektronenspins schliessen lässt. Dieser Zustand blieb auch konstant, als die Forscher die Probe auf noch tiefere Temperaturen bis zehn Millikelvin herunterkühlten.

Kopplung von Kernen und Elektronen
Die Resultate sind deshalb aussergewöhnlich, weil zum ersten Mal eine Kernspinordnung schon bei rund 0,1 Kelvin gemessen werden konnte. Dass sich eine spontane Ordnung der Kernspins bildet, liess sich meist erst unter einem Mikrokelvin beobachten, also bei einer um fünf Grössenordnungen tieferen Temperatur.

Die Erklärung, weshalb eine Kernspinordnung schon bei 0,1 Kelvin möglich ist, liegt darin, dass die Kerne der Gallium- und der Arsenatome in Quantendrähten an die Elektronen koppeln und diese wiederum auf die Kerne rückwirken. Durch diese Kopplung verstärkt sich die Wechselwirkung zwischen den magnetischen Momenten, was zur Ordnung der Kern- und Elektronenspins führt. Diese wird zusätzlich durch den Umstand stabilisiert, dass sich die Elektronen in den eindimensionalen Quantendrähten nicht ausweichen können, wodurch sie stark miteinander wechselwirken.

Spiralförmige Ordnung der Elektronen- und Kernspins
Im geordneten Zustand zeigen die Spins der Elektronen und der Atomkerne allerdings nicht alle in dieselbe Richtung, sondern ihre Ausrichtung war entlang des Quantendrahts spiralförmig verdreht. Diese Anordnung der Spins in Form einer Helix, wird von einem theoretischen Modell vorausgesagt, das Physiker um Prof. Daniel Loss von der Universität Basel bereits 2009 beschrieben hatten. Demnach halbiert sich die Leitfähigkeit bei einer spiralförmigen Anordnung der Kernspins. Alle anderen heute bekannten Theorien sind mit den Daten aus dem Experiment nicht vereinbar.
Schritt hin zur Entwicklung von Quantenrechnern
Die Resultate des Experiments sind für die Grundlagenforschung von grosser Bedeutung, aber auch für die Entwicklung von Quantenrechnern interessant, die auf Elektronenspins beruhen und diese als Informationseinheit verwenden (vorgeschlagen 1997 von Daniel Loss and David P. DiVincenzo). Um mit Elektronenspins rechnen zu können, müssen sie für lange Zeit stabil gehalten werden. Doch die schwierig zu kontrollierenden Kernspins stellen für die Stabilität der Elektronenspins eine grosse Fehlerquelle dar.

Die Arbeit der Basler Physiker zeigt nun einen Weg auf, wie sich die Störung durch Kernspins beheben lässt. Denn durch die im Experiment erreichte Ordnung der Kernspins lassen sich vielleicht in den Quantendrähten viel stabilere Informationseinheiten erzeugen.

Zudem lassen sich die Kernspins mit elektrischen Feldern steuern, was bisher nicht möglich war: Durch das Anlegen einer elektrischen Spannung werden die Elektronen aus dem Halbleiter hinausgeworfen, wodurch sich die Elektron-Kern-Kopplung und die spiralförmige Ordnung der Spins wieder auflöst.

Internationale Forschungszusammenarbeit
Die Arbeit wurde von einem internationalen Team um Prof. Dominik Zumbühl vom Departement Physik der Universität Basel ausgeführt. Bei den Messungen wurden die Basler Physiker von der Harvard University unterstützt (Prof. Amir Yacoby); die Nanodrähte stammen von der Princeton University (Loren N. Pfeiffer und Ken West).

Die Forschung wurde vom Europäischen Forschungsrat, vom Schweizerischen Nationalfonds, vom Basler Zentrum für Quantencomputing und Quantenkohärenz (Basel QC2 Center), vom Swiss Nanoscience Institute und vom Nationalen Forschungsschwerpunkt Quantenwissenschaften und -technologie (QSIT) mitfinanziert.

Originalbeiträge
Experiment:
C. P. Scheller, T.-M. Liu, G. Barak, A. Yacoby, L. N. Pfeiffer, K. W. West, and D. M. Zumbühl
Possible Evidence for Helical Nuclear Spin Order in GaAs Quantum Wires
Physical Review Letters, published 10 February 2014 | doi: 10.1103/PhysRevLett.112.066801
Theorie:
B. Braunecker, P. Simon, and D. Loss
Nuclear magnetism and electron order in interacting one-dimensional conductors
Physical Review B, published 16 October 2009 | doi: 10.1103/PhysRevB.80.165119
Weitere Auskünfte
• Prof. Dr. Dominik Zumbühl, Universität Basel, Departement Physik,
Tel. +41 61 267 36 93, E-Mail: dominik.zumbuhl@unibas.ch
• Prof. Dr. Daniel Loss, Universität Basel, Departement Physik,
Tel. +41 61 267 37 49, E-Mail: daniel.loss@unibas.ch
Weitere Informationen:
http://dx.doi.org/10.1103/PhysRevLett.112.066801 - Abstract

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie

Freie Elektronen in Sonnen-Protuberanzen untersucht

25.07.2017 | Physik Astronomie

Die turbulente Atmosphäre der Venus

25.07.2017 | Physik Astronomie