Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spintronik: Physikerteam gelingt Nachweis eines nano-mechanischen Torsionseffektes durch Drehimpulsänderung von Elektronen

11.11.2008
Wissenschaftlern um den Quantenmechaniker Pritiraj Mohanty (Boston University) gelang jetzt erstmals die nanomechanische Messung einer Torsion eines Nanodrahtes, die durch die Umkehrung des Drehimpulses von Spin-polarisierten Elektronen verursacht wurde.

Die Messung bestätigt eine vor über zehn Jahren von den theoretischen Physikern Stefan Kettemann, Jacobs University, und Peter Fulde, MPI für Komplexe Systeme, in den Annalen der Physik publizierten Vorhersage.

Der Effekt, von dem sich Experten unter anderem neue Perspektiven in der Spintronik versprechen, wurde jetzt in einem gemeinsamen Artikel in der aktuellen Ausgabe von Nature Nanotechnology veröffentlicht (doi:10.1038/nnano.2008.311).

Die Spintronik, ein neues noch in der Entwicklung befindliches Forschungsgebiet in der Nanoelektronik, nutzt das magnetische Moment von Elektronen zur Informationsdarstellung und -verarbeitung und nicht nur deren Ladung wie die herkömmliche Halbleiterelektonik. Das magnetische Moment steht in enger Beziehung mit einer Art Eigenrotation der Elektronen, dem quantenmechanischen Spin. Dieser Spin kann nur zwei diskrete Zustände annehmen: er kann "auf" oder "ab" zeigen. In einem magnetischen Metall zeigen alle Spins in die gleiche Richtung, sie sind polarisiert.

Fließt Strom (in Form von Elektronen) von einem unpolarisierten Metall in einen spinpolarisierten Magneten, müssen die Elektronen, deren Spin in die falsche Richtung zeigt, ihren Spin umkehren, was als "Spin-Flip" bezeichnet wird. Aufgrund des physikalischen Gesetzes der Erhaltung des Drehimpulses überträgt sich diese Umkehrung des elektronischen Drehimpulses als mechanische Torsionsenergie auf das Material. Wenn sehr viele Elektronen gleichzeitig ihren Spin umkehren, wird die winzige Drehimpulsänderung verstärkt und als mechanische Verdrillung von sehr dünnen Drähten im Nanomaßstab messbar.

In der experimentellen Messapparatur, die in enger Zusammenarbeit mit den beiden Theoretikern entworfen und im Tieftemperatur-Nanotechnologie-Labor der Boston University aufgebaut wurde, wurde ein Elektronenstrom von einem ferromagnetischen Kobaltdraht in einen nichtmagnetischen Golddraht geschickt. Am Kontaktpunkt der beiden Drähte von 50 Nanometer Durchmesser diente eine nanoelektromechanische Struktur, ein Resonator, bei dem zwei Flügel einander entgegen gerichtete Torsionsschwingungen ausführten, der Verstärkung des durch Elektronen-Spin-Flip erzeugten Torsionseffektes auf messbare Werte von 10-22 NewtonMeter.

"Als wir die Idee einer Spin-Flip-Torsionswaage hatten", erinnert sich Stefan Kettemann, "hielten wir es für einen so winzigen Effekt, der wenig mehr als ein Gedankenexperiment von theoretischen Physikern bleiben würde. Die jetzt geglückte Messung zeigt jedoch, dass man über magnetische Spin-Manipulation von Elektronen sehr winzige mechanische Bewegungen erzeugen kann, die man sich beispielsweise als zukünftige Basis eines winzigen Schalters von wenigen Nanometern Größe für eine sehr schnelle und energieeffiziente Informationstechnologie vorstellen kann", so Kettemann weiter über die Bedeutung des Bostoner Experimentes.

Fragen zu dieser Arbeit beantwortet:
Dr. habil. Stefan Kettemann
Tel.: 0421 200-3150
E-Mail: s.kettemann@jacobs-university.de

Dr. Kristin Beck | idw
Weitere Informationen:
http://www.jacobs-university.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops