Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

SPINSTARS: die erste Sterngeneration des Universums?

28.04.2011
Fingerabdruck schnell rotierender, schwerer Sterne aus der Frühphase unserer Milchstraße nachgewiesen.

Aus der Untersuchung der chemischen Zusammensetzung der ältesten Sterne unserer Milchstraße, hat ein internationales Team von Astronomen um Cristina Chiappini vom Leibniz-Institut für Astrophysik Potsdam (AIP) und dem Instituto Nazionale di Astrofisica (INAF) neue Erkenntnisse über die Natur der ersten Sterngenerationen unseres Universums abgeleitet.


Simulation der Entstehung der ersten Sterne mit sehr schneller Eigendrehung. Bild: A. Stacy, University of Texas). Bild adaptiert aus Stacy et al, 2011, MNRAS 413,1, 543.

„Wir glauben, dass die schweren Sterne der ersten Generationen sich sehr schnell um sich selbst gedreht haben – wir nennen sie daher SPINSTARS (engl.: „sich drehende Sterne“)”, erklärt Chiappini. Die Ergebnisse ihrer Forschungen werden am 28. April 2011 in Nature publiziert.

Das Leben massereicher Sterne ist heftig und kurz. Daher sind die ersten Generationen schwerer Sterne im Universum bereits vergangen. Allerdings lassen sich ihre chemischen Hinterlassenschaften wie ein Fingerabdruck auch heute noch in den ältesten Sternen unserer Milchstraße nachweisen. Diese fossilen Überreste geben Zeugnis über die Eigenschaften der ersten, inzwischen vergangenen, Sterngenerationen die unser Universum bei ihrem Tod mit neuen chemischen Elementen angereichert haben. „Es ist als wollten wir die Persönlichkeit des Kochs aus dem Geschmack seiner Gerichte erschließen“, illustriert Prof. Georges Meynet von der Universität Genf die Herangehensweise der Forscher.

Wie sahen diese ersten Sterne aus? Waren sie anders als Sterne, die wir heute beobachten?

Kurz nach dem Urknall war die Zusammensetzung des Universums sehr viel einfacher als heute: es bestand in erster Linie aus Wasserstoff und Helium. Die chemische Anreicherung des Universums mit weiteren Elementen ließ noch etwa 300 Millionen Jahre, bis zum Tod der ersten Generationen massereicher Sterne, auf sich warten. Diese Sterne hatten zwischenzeitlich in ihrem Inneren neue chemische Elemente produziert, mit denen sie nun das Ur-Gas „verschmutzten“ aus dem dann die nächste Generation von Sternen entstand.

Für ihr Forschungsprojekt analysierten die Astronomen Spektren sehr alter Sterne unserer Milchstraße aus Beobachtungsdaten mit dem Very Large Telescope (VLT) der ESO. Diese Sterne sind so alt, dass nur sehr massereiche, kurzlebige Sterne mit mehr als der etwa 10-fachen Masse der Sonne zuvor genug Zeit hatten zu sterben und das Gas, aus dem sich die Sterne formten, zu verschmutzen. Wie erwartet zeigte die Auswertung der Beobachtungsdaten typische Elemente für solch eine Anreicherung des Gases durch massereiche Sterne. Allerdings entdeckten die Forscher unerwartet auch solche Elemente, von denen man normalerweise annimmt, dass sie nur in Sternen niedrigerer Masse produziert werden. Falls die massereichen Sterne sehr schnell rotierten, könnten sie allerdings auch selbst für die Produktion solcher Elemente verantwortlich sein.

„Noch können wir alternative Szenarien nicht ausschließen, so Cristina Chiappini, „aber wir zeigen dass SPINSTARS als erste Generation massereicher Sterne im Universum eine sehr elegante Lösung dieses Rätsels sind!“. Teammitglied Urs Frischknecht, ein Doktorand an der Universität Basel, arbeitet bereits daran, die numerischen Simulationen der Sterne zu erweitern, um das vorgeschlagene Szenario weiter zu testen.

Eine frühe Generation von SPINSTARS im Universum hätte eine Vielzahl von Konsequenzen. Die Eigendrehung eines Sterns beeinflusst auch seine weiteren Eigenschaften, wie seine Farbe, seine Lebensdauer und seine Leuchtkraft, stark. Somit wären auch die Eigenschaften und die Erscheinung der ersten Galaxien des Universums durch SPINSTARS verändert. Die Hypothese der Existenz von SPINSTARS wurde kürzlich auch durch hydrodynamische Simulationen zur Entstehung der ersten Sterne des Universums durch eine unabhängige Forschergruppe unterstützt.

Weitere Informationen:
- Originalpublikation: Chiappini et al., Imprints of fast-rotating massive stars in the Galactic Bulge, zur Veröffentlichung in Nature, 2011. (DOI: 10.1038/nature10000, publication date: April 28, 2011)

- Leibniz-Institut für Astrophysik Potsdam (AIP) - www.aip.de

Wissenschaftlicher Kontakt:
Dr. Cristina Chiappini, Leibniz-Institut für Astrophysik Potsdam (AIP), Email: cristina.chiappini@aip.de, Tel.: +49 331 7499 454
Presse-Kontakt:
Dr. Gabriele Schönherr, Leibniz-Institut für Astrophysik Potsdam (AIP), Email: presse@aip.de, Tel.: +49 331 7499 383

Madleen Köppen, AIP, Email: presse@aip.de Tel.: +49 331 7499 469

Das Leibniz-Institut für Astrophysik Potsdam (AIP) beschäftigt sich vorrangig mit kosmischen Magnetfeldern und extragalaktischer Astrophysik. Daneben wirkt das Institut als Kompetenzzentrum bei der Entwicklung von Forschungstechnologie in den Bereichen Spektroskopie, robotische Teleskope und E-Science. Das AIP ist Nachfolger der 1700 gegründeten Berliner Sternwarte und des 1874 gegründeten Astrophysikalischen Observatoriums Potsdam, das sich als erstes Institut weltweit ausdrücklich der Astrophysik widmete. Das AIP ist eine Stiftung bürgerlichen Rechts und ein Institut der Leibniz-Gemeinschaft. Zur Leibniz-Gemeinschaft gehören derzeit 87 Forschungsinstitute und Serviceeinrichtungen für die Forschung sowie drei assoziierte Mitglieder, die wissenschaftliche Fragestellungen von gesamtgesellschaftlicher Bedeutung bearbeiten.

Dr. Gabriele Schönherr | Leibniz-Institut
Weitere Informationen:
http://www.aip.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie