Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spinpolarisation durch Starkfeldionisation

15.08.2016

Starkfeldionisation wird seit mehr als einem halben Jahrhundert untersucht. Dennoch ist die Rolle des Elektronenspins während dieses Prozesses weitgehend übersehen worden. Unsere gemeinsame experimentelle und theoretische Untersuchung erbrachte nun das erstaunliche Ergebnis, dass die Chance, ein Spin-up oder ein Spin-down Elektron aus einen Atom herauszulösen, sehr unterschiedlich sein kann.

Als eine Grundeigenschaft des Elektrons spielt der Spin eine entscheidende Rolle in der elektronischen Struktur der Materie, von Molekülen und Atomen bis zu Feststoffen, wobei er beispielsweise die magnetischen Materieeigenschaften bestimmt.


Abb. 1: Spinpolarisation gemessen als Funktion der Elektronenenergie.

Abb.: MBI

Ultrakurze Elektronenpulse sind einzigartige Werkzeuge um Materialien zu untersuchen, sowohl deren Struktur als auch Dynamik, und eröffnen ein reiches Feld der ultraschnellen Bildgebung mittels Beugung. Da der Elektronenspin eine wesentliche Variable bei der Beugung darstellt, würden ultrakurze Pulse spinpolarisierter Elektronen diesem Feld eine völlig neue Dimension hinzufügen. Aber wo könnte man solche Pulse erhalten?

Eine Möglichkeit ist die Ionisation in starken Laserfeldern zu nutzen. Dieser Prozess erzeugt von Natur aus Elektronen in ultrakurzen Stößen. Die Bursts dauern nur einen kleinen Bruchteil der Laserperiode an, wenn sie von den Grenzen des Bindungspotentials freigesetzt werden. Aber wären diese Elektronenbursts spinpolarisiert? Überraschenderweise ist diese Frage bis vor kurzem nie gestellt worden.

Diese Situation hat sich nun mit der gemeinsamen experimentellen und theoretischen Arbeit von Alexander Hartung et al., inspiriert von der früheren theoretischen Vorhersage von I. Barth und O. Smirnova (Phys. Rev. A 88, 013401, 2013), geändert. Gas von Xe-Atomen nutzend, präsentieren die Autoren den ersten experimentellen Nachweis von Elektronenspinpolarisation erzeugt durch Starkfeldionisation.

Die gemessene Spinpolarisation, siehe Abb.1, erreichte Werte bis zu 30% hoch, wobei sich ihr Vorzeichen mit der Elektronenenergie umkehrt. Diese Arbeit eröffnet die neue Dimension des Spins in der Starkfeldphysik. Sie ebnet den Weg für die Erzeugung von Sub-Femtosekunden, spinpolarisierten Elektronenpulsen mit zahlreichen Anwendungen, die sich von der Untersuchung magnetischer Eigenschaften von Materie auf ultraschnellen Zeitskalen bis hin zum Testen chiraler molekularer Systeme mit Sub-Femtosekunden Zeit- und Sub-Ångström Raumauflösung erstrecken.

Die Veröffentlichung zeigt auch, dass Spinpolarisation während der Laser-getriebenen Elektronenrekollision mit dem Mutter-Ion wichtig ist, wenn solch eine Rekollision durch ein elliptisches Laserfeld herbeigeführt wird. Da bei der Laser-getriebenen Elektronenkollision mit dem Mutter-Ion das Elektron vollständig durch das Laserfeld gesteuert wird, kann die Dynamik nun nicht nur mit Attosekunden zeitlicher und Ångström räumlicher Auflösung untersucht werden, sondern auch mit Spin-Empfindlichkeit.

Dies würde es ermöglichen chirale Moleküle mit Sub-Femtosekunden Zeitauflösung und Sub-Ångström Raumauflösung zu untersuchen. Abschließend, die Spinpolarisation des herausgelösten Elektrons ist fest verbunden mit der Erzeugung des Mutter-Ions in einem anfänglich spinpolarisierten Zustand. Spin-Bahn-Kopplung führt dann zu internen ringförmigen Elektronen- und Spinströmen.

Originalpublikation:
Electron spin polarization in strong-field ionization of xenon atoms;
Alexander Hartung, Felipe Morales, Maksim Kunitski, Kevin Henrichs, Alina Laucke, Martin Richter, Till Jahnke, Anton Kalinin, Markus Schöffler, Lothar Ph. H. Schmidt, Misha Ivanov, Olga Smirnova, Reinhard Dörner
Nature Photonics 10, 526–528 (2016) doi:10.1038/nphoton.2016.109

Abb. 1: Spinpolarisation gemessen als Funktion der Elektronenenergie. Die blaue Kurve ist eine theoretische Vorhersage, während die roten Punkte mit Fehlerbalken die experimentellen Ergebnisse zeigen. Die Messung erfolgte für Xe-Atome.
Abb.: MBI

Kontakt:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Max-Born-Str. 2A
12489 Berlin

Prof. Olga Smirnova
Tel.: +49 (0) 30 6392 1340
smirnova@mbi-berlin.de

Prof. Mikhail Ivanov
Tel. +49 (0) 30 6392 1210
mivanov@mbi-berlin.de

Dr. Felipe Morales
Tel. +49 (0) 30 6392 1358
morales@mbi-berlin.de

Weitere Informationen:

http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie