Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spin-Pump-Effekt erstmals nachgewiesen

12.09.2011
RUB-Physiker machen hochpräzise Experimente zur Dynamik in Spinventilen / Rotierende magnetische Momente: Applied Physics Letters berichtet

Den Spin-Pump-Effekt in magnetischen Schichten haben Bochumer Physiker um Prof. Dr. Hartmut Zabel erstmals experimentell nachgewiesen. Das Verhalten des Spin-Pumpens war bisher nur theoretisch vorausgesagt worden. Dem Forscherteam der RUB ist es nun gelungen, den Effekt durch ultraschnelle Röntgenstreuung mit Auflösung im Pikosekundenbereich zu messen.


Messkammer ALICE in Berlin


Zwei ferromagnetische Schichten (Co und Fe81Ni19) sind durch eine dickere nicht-magnetische Cu-Schicht getrennt. Wenn die magnetischen Momente M1 in der linken Schicht zur Präzession um eine magnetische Feldachse Bz angeregt werden, dann wird auch die Präzession der magnetischen Momente M2 in der zweiten Schicht davon beeinflusst. Diese gegenseitige Beeinflussung wird Spin-Pump-Effekt genannt und bewirkt, dass die Präzession von M1 stärker gedämpft wird, wenn die Momente M1 und M2 antiparallel ausgerichtet sind als im parallelen Fall. Der Spinstrom, der durch die nicht-magnetische Cu-Schicht „gepumpt“ wird, ist schematisch durch kleine Pfeile angedeutet

Mit ihrer Rotation der magnetischen Momente, der so genannten magnetischen Präzession, können sich einzelne Elektronen durch eine nicht-magnetische Zwischenschicht hindurch in ihrer Drehbewegung (Spin) gegenseitig beeinflussen. Das ist eine entscheidende Erkenntnis für künftige Generationen von Magnetsensoren in Festplatten-Leseköpfen und anderen Datenspeichern. Über ihre Ergebnisse berichten die Forscher in der renommierten Zeitschrift „Applied Physics Letters“ des American Institutes of Physics.

Magnetische Kreisel sind anders

Ein Kreisel, einmal in Schwung gebracht und sich selbst überlassen, wird nach einigen Rotationen langsamer und kommt schließlich zum Stehen. Reibungsverluste entziehen ihm Energie, bis er schließlich aufhört zu drehen. Auch zwei Kreisel in einem gewissen Abstand, um Berührung zu vermeiden, zeigen im Großen und Ganzen das gleiche Verhalten. „Insbesondere erwarten wir nicht, dass der eine Kreisel den anderen in seiner Rotation beeinflussen kann“, so Prof. Hartmut Zabel. Ob beide Kreisel sich in der gleichen oder in entgegengesetzter Richtung drehen, sollte keinen Einfluss auf die Zahl der Rotationen bis zum Stillstanden haben. „Genau das ist aber bei magnetischen Kreiseln der Fall“, bestätigt die Bochumer Forschergruppe in ihren Experimenten.

Magnetische Rotation im Gigahertzbereich

Einmal angestoßen rotieren die magnetischen Momente in einem Kristallgitter solange, bis ihre Rotationsenergie durch Anregung von Gitterschwingungen und Spinwellen aufgebraucht ist. Spinwellen sind Anregungen der magnetischen Momente in einem Kristall, die sich wellenartig ausbreiten. Das Forscherteam hat zwei ultradünne magnetische Schichten durch eine Kupferschicht getrennt. Die Kupferschicht wurde so dick gewählt, dass die beiden ferromagnetischen Schichten keinen Einfluss aufeinander ausüben können – zumindest nicht statisch. Sobald jedoch eine der beiden ferromagnetischen Schichten zu sehr schneller Präzession im Gigahertzbereich angeregt wird, hängt die Dämpfung der Präzession von der Orientierung der zweiten magnetischen Schicht ab. Sind beide Schichten gleich orientiert, dann ist die Dämpfung geringer; sind beide entgegengesetzt orientiert, dann ist die Dämpfung größer.

Dynamische Wechselwirkung

Der als „Spin-Pumpen“ bezeichnete Effekt konnte aber bisher noch nicht experimentell erforscht werden. Der Nachweis gelang den Wissenschaftlern jetzt an der von RUB-Physikern gebauten Messkammer ALICE in Berlin. Die Präzession der magnetischen Momente in einer ferromagnetischen Schicht wird durch die nicht-magnetische Kupfer-Zwischenschicht hindurch „gepumpt“ und von der zweiten ferromagnetischen Schicht aufgenommen. Mit anderen Worten: Ferromagnetische Schichten, die statisch nicht mit einander wechselwirken, da die Zwischenschicht zu dick ist, können dennoch dynamisch durch Pumpen und Diffusion von Spins von einer Schicht zur anderen miteinander „agieren“.

Ein typisches „Spinventil“ in Datenspeichern

Die gewählte Schichtabfolge im Experiment entspricht der eines typischen Spinventils. Das sind nanomagnetische Schichtstrukturen, die als Magnetsensor in den Leseköpfen von Festplatten eingesetzt werden sowie in nicht-flüchtigen magnetischen Datenspeichern die logischen Bits „0“ und „1“ kodieren. Die Geschwindigkeit, mit der Daten gelesen und geschrieben werden können, hängt entscheidend von der Präzession der magnetischen Momente und deren Dämpfung ab. „Daher ist die Erkenntnis, dass die Dämpfung der magnetischen Präzession durch Spin-Pumpen über nicht-magnetische Zwischenschichten hinweg beeinflusst wird, nicht nur von grundsätzlichem sondern auch von praktischem Interesse für industrielle Anwendungen“, sagt Prof. Zabel.

Titelaufnahme

R. Salikhov,R. Abrudan, F. Brüssing, St. Buschhorn, M. Ewerlin, D. Mishra,
F. Radu, I. A. Garifullin, and H. Zabel, „Precessional Dynamics and Damping in Co/Cu/Py Spin Valves”, Applied Physics Letters Vol. 99, Seite 092509 (2011), DOI: 10.1063/1.3633115

Weitere Informationen

Prof. Dr. Hartmut Zabel, Lehrstuhl für Experimentalphysik / Festkörperphysik der Ruhr-Universität Bochum, Tel. 0234/32-23649, E-Mail hartmut.zabel@rub.de

Redaktion: Jens Wylkop

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
20.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics