Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Spiegelbild der Geisterteilchen

16.07.2013
Experiment GERDA liefert keinen Hinweis, dass Neutrinos ihre eigenen Antiteilchen sind

Neutrinos sind scheue Teilchen, die mit allen anderen Bausteinen der Materie nur extrem selten wechselwirken. Sie haben ungewöhnliche Eigenschaften – und sie sind vermutlich sogar mit ihren eigenen Antiteilchen identisch.


Das Modell des GERDA-Experiments zeigt den schalenartigen Aufbau, bei dem zur Unterdrückung störender Signale aus der Umgebung von außen nach innen immer reinere Materialien eingesetzt sind. Die Germaniumdioden im Innern des mit 64000 Liter flüssigem, minus 186 Grad Celsius kaltem Argon gefüllten Kryostaten sind vergrößert dargestellt. MPIK

Allerdings ist das bisher noch nicht experimentell bestätigt worden. Wissenschaftler der GERDA-Kollaboration haben nun neue Grenzen für den neutrinolosen Doppelbetazerfall gesetzt, der überprüft, ob Neutrinos ihre eigenen Antiteilchen sind. Das Resultat widerlegt eine frühere Entdeckungsmeldung.

Neben Photonen sind Neutrinos die häufigsten Teilchen im All. Sie werden oft Geisterteilchen genannt, weil sie so extrem selten mit Materie wechselwirken. Daher bilden sie einen unsichtbaren, aber bedeutenden Bestandteil des Universums und könnten etwa genauso viel zu dessen Masse beitragen wie alle anderen bekannten Formen von Materie; dabei bewegen sie sich mit nahezu Lichtgeschwindigkeit über phantastische Entfernungen.

Außerdem haben ihre winzigen Massen einen wichtigen Einfluss auf die Strukturen im Universum, und sie sind die treibende Kraft bei der Explosion von Supernovae. Ihre bemerkenswerteste und wichtigste Eigenschaft aber wurde von Ettore Majorana in den 1930er-Jahren postuliert: Im Gegensatz zu allen anderen Teilchen, aus denen die uns umgebende Materie besteht, könnten sie ihre eigenen Antiteilchen sein.

Teilchen und Antiteilchen unterscheiden sich vor allem durch das Vorzeichen ihrer elektrischen Ladung. So etwa ist das Positron, das Antiteilchen des negativ geladenen Elektrons, elektrisch positiv geladen. Das Neutrino dagegen ist elektrisch neutral – die Voraussetzung dafür, dass es sein eigenes Antiteilchen sein kann. Ob das tatsächlich zutrifft, soll das Experiment GERDA (GERmanium Detector Array) klären, das im Untergrundlabor Laboratori Nazionali del Gran Sasso des Istituto Nazionale di Fisica Nucleare in Italien betrieben wird. Zudem wollen die Forscher die Masse der Neutrinos bestimmen. Dazu untersucht GERDA sogenannte Doppelbeta-Zerfallsprozesse des Germanium-Isotops Ge-76 mit und ohne Emission von Neutrinos – letzterer eine Konsequenz der Majorana-Eigenschaft.

Beim normalen Betazerfall wird aus einem Neutron im Kern ein Proton, ein Elektron und ein Antineutrino. Für Kerne wie Ge-76 ist dieser Zerfall energetisch verboten, aber die gleichzeitige Umwandlung von zwei Neutronen unter Emission zweier Neutrinos ist möglich und wurde kürzlich von GERDA mit bisher unerreichter Präzision gemessen. Es handelt sich um einen der seltensten jemals beobachteten Zerfälle mit einer Halbwertszeit von etwa 2 x 1021 Jahren – entsprechend dem rund 100-milliardenfachen Alter des Universums.

Falls Neutrinos Majorana-Teilchen sind – also ihre eigenen Antiteilchen –, sollte der Doppelbetazerfall ohne Emission von Neutrinos ebenfalls stattfinden, und zwar mit einer noch geringeren Rate. In diesem Fall wird das Antineutrino des einen Betazerfalls vom zweiten beta-zerfallenden Neutron als Neutrino absorbiert – was nur möglich ist, wenn Neutrino und Antineutrino identisch sind.

Bei GERDA sind Germaniumkristalle zugleich Quelle und Detektor des Zerfalls. Natürliches Germanium enthält nur etwa acht Prozent Ge-76, das deshalb um mehr als das Zehnfache angereichert wurde, bevor daraus die speziellen Detektorkristalle gezogen wurden. Die Suche nach einer Nadel im Heuhaufen ist eine Kleinigkeit gegenüber dem Nachweis des Doppelbetazerfalls, weil die Radioaktivität der Umgebung milliardenfach stärker ist. Die Detektorkristalle für GERDA und die sie umgebenden Teile wurden daher sehr sorgfältig ausgewählt und verarbeitet.

Zur Beobachtung des äußerst seltenen Prozesses bedarf es außerdem sehr ausgefeilter Techniken, um den Untergrund von kosmischen Teilchen, natürlicher Radioaktivität der Umgebung und sogar dem Experiment selbst weiter zu unterdrücken. Den Wissenschaftlern gelingt das, indem sie die Detektoren in der Mitte einer riesigen „Thermoskanne“ betreiben, die mit extrem reinem flüssigem Argon gefüllt, mit hochreinem Kupfer ausgekleidet und von einem mit Reinstwasser gefüllten Tank von zehn Metern Durchmesser umgeben ist. Dieser Aufbau befindet sich unter 1400 Meter Gestein. Erst die Kombination all dieser Techniken ermöglichte es, den störenden Untergrund auf ein extrem tiefes Niveau zu senken.

Im Herbst 2011 starteten die Messungen mit zunächst acht Detektoren von der Größe einer Getränkedose und jeweils etwa zwei Kilogramm Gewicht; später kamen fünf weitere Detektoren neuer Bauart hinzu. Bis vor kurzem war der Signalbereich in den Daten ausgeblendet, und die Physiker konzentrierten sich auf die Optimierung des Verfahrens zur Datenanalyse. Das Experiment hat jetzt seine erste Phase abgeschlossen.

Die Analyse, für die sämtliche Kalibrierungen und Filter vor Verarbeitung der Daten im Signalbereich definiert waren, ergab kein Signal des neutrinolosen Doppelbetazerfalls in Ge-76, was zu der weltbesten Untergrenze für dessen Halbwertszeit von 2,1 x 1025 Jahren führt. Zusammen mit den Ergebnissen anderer Experimente schließt dieses Resultat eine frühere Behauptung, ein Signal gefunden zu haben, aus.

Damit bleibt zwar die Frage derzeit noch offen, ob Neutrinos ihre eigenen Antiteilchen sind; die neuen Resultate von GERDA haben jedoch interessante Konsequenzen für das Wissen über Neutrinomassen, Erweiterungen des Standardmodells der Elementarteilchenphysik, astrophysikalische Prozesse und Kosmologie.

In einem nächsten Schritt wollen die Forscher zusätzliche neue Detektoren einsetzen und damit die Menge von Ge-76 in GERDA verdoppeln. Sobald einige weitere Verbesserungen zur noch stärkeren Untergrundunterdrückung umgesetzt sind, soll eine zweite Messphase folgen.

GERDA ist eine europäische Kollaboration, die Wissenschaftler aus 16 Forschungsinstituten oder Universitäten in Deutschland, Italien, Russland, der Schweiz, Polen und Belgien umfasst. In Deutschland sind die Max-Planck-Institute für Kernphysik in Heidelberg und für Physik in München, die Technische Universität München, die Universität Tübingen und die Technische Universität Dresden beteiligt. Die Max-Planck-Gesellschaft ist wesentlicher Geldgeber des Projekts; die Universitäten werden vom BMBF und der DFG unterstützt.

Originalveröffentlichung:
Results of neutrinoless double beta decay of 76Ge from GERDA Phase arXiv, 16. Juli 2013
Ansprechpartner:
Dr. Gertrud Hönes
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon: +49 6221 516-572
E-Mail: oea@­mpi-hd.mpg.de
Silke Zollinger
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Physik, München
Telefon: +49 89 32354-292
E-Mail: silke.zollinger@­mpp.mpg.de
Prof. Manfred Lindner
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon: +49 6221 516-800
E-Mail: lindner@­mpi-hd.mpg.de
Dr. Béla Majorovits
Max-Planck-Institut für Physik, München
Telefon: +49 89 32354-262
E-Mail: bela@­mppmu.mpg.de
Prof. Stefan Schönert
TU München
Tel.: 089 289 12511
E-Mail: schoenert@ph.tum.de
Prof. Peter Grabmayr
Uni Tübingen
Tel.: 07071 297 4450
E-Mail: grabmayr@uni-tuebingen.de
Prof. Kai Zuber
TU Dresden
Tel.: 0351 463 42250
E-Mail: zuber@physik.tu-dresden.de

Dr Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie