Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Spiegelbild der Geisterteilchen

16.07.2013
Experiment GERDA liefert keinen Hinweis, dass Neutrinos ihre eigenen Antiteilchen sind

Neutrinos sind scheue Teilchen, die mit allen anderen Bausteinen der Materie nur extrem selten wechselwirken. Sie haben ungewöhnliche Eigenschaften – und sie sind vermutlich sogar mit ihren eigenen Antiteilchen identisch.


Das Modell des GERDA-Experiments zeigt den schalenartigen Aufbau, bei dem zur Unterdrückung störender Signale aus der Umgebung von außen nach innen immer reinere Materialien eingesetzt sind. Die Germaniumdioden im Innern des mit 64000 Liter flüssigem, minus 186 Grad Celsius kaltem Argon gefüllten Kryostaten sind vergrößert dargestellt. MPIK

Allerdings ist das bisher noch nicht experimentell bestätigt worden. Wissenschaftler der GERDA-Kollaboration haben nun neue Grenzen für den neutrinolosen Doppelbetazerfall gesetzt, der überprüft, ob Neutrinos ihre eigenen Antiteilchen sind. Das Resultat widerlegt eine frühere Entdeckungsmeldung.

Neben Photonen sind Neutrinos die häufigsten Teilchen im All. Sie werden oft Geisterteilchen genannt, weil sie so extrem selten mit Materie wechselwirken. Daher bilden sie einen unsichtbaren, aber bedeutenden Bestandteil des Universums und könnten etwa genauso viel zu dessen Masse beitragen wie alle anderen bekannten Formen von Materie; dabei bewegen sie sich mit nahezu Lichtgeschwindigkeit über phantastische Entfernungen.

Außerdem haben ihre winzigen Massen einen wichtigen Einfluss auf die Strukturen im Universum, und sie sind die treibende Kraft bei der Explosion von Supernovae. Ihre bemerkenswerteste und wichtigste Eigenschaft aber wurde von Ettore Majorana in den 1930er-Jahren postuliert: Im Gegensatz zu allen anderen Teilchen, aus denen die uns umgebende Materie besteht, könnten sie ihre eigenen Antiteilchen sein.

Teilchen und Antiteilchen unterscheiden sich vor allem durch das Vorzeichen ihrer elektrischen Ladung. So etwa ist das Positron, das Antiteilchen des negativ geladenen Elektrons, elektrisch positiv geladen. Das Neutrino dagegen ist elektrisch neutral – die Voraussetzung dafür, dass es sein eigenes Antiteilchen sein kann. Ob das tatsächlich zutrifft, soll das Experiment GERDA (GERmanium Detector Array) klären, das im Untergrundlabor Laboratori Nazionali del Gran Sasso des Istituto Nazionale di Fisica Nucleare in Italien betrieben wird. Zudem wollen die Forscher die Masse der Neutrinos bestimmen. Dazu untersucht GERDA sogenannte Doppelbeta-Zerfallsprozesse des Germanium-Isotops Ge-76 mit und ohne Emission von Neutrinos – letzterer eine Konsequenz der Majorana-Eigenschaft.

Beim normalen Betazerfall wird aus einem Neutron im Kern ein Proton, ein Elektron und ein Antineutrino. Für Kerne wie Ge-76 ist dieser Zerfall energetisch verboten, aber die gleichzeitige Umwandlung von zwei Neutronen unter Emission zweier Neutrinos ist möglich und wurde kürzlich von GERDA mit bisher unerreichter Präzision gemessen. Es handelt sich um einen der seltensten jemals beobachteten Zerfälle mit einer Halbwertszeit von etwa 2 x 1021 Jahren – entsprechend dem rund 100-milliardenfachen Alter des Universums.

Falls Neutrinos Majorana-Teilchen sind – also ihre eigenen Antiteilchen –, sollte der Doppelbetazerfall ohne Emission von Neutrinos ebenfalls stattfinden, und zwar mit einer noch geringeren Rate. In diesem Fall wird das Antineutrino des einen Betazerfalls vom zweiten beta-zerfallenden Neutron als Neutrino absorbiert – was nur möglich ist, wenn Neutrino und Antineutrino identisch sind.

Bei GERDA sind Germaniumkristalle zugleich Quelle und Detektor des Zerfalls. Natürliches Germanium enthält nur etwa acht Prozent Ge-76, das deshalb um mehr als das Zehnfache angereichert wurde, bevor daraus die speziellen Detektorkristalle gezogen wurden. Die Suche nach einer Nadel im Heuhaufen ist eine Kleinigkeit gegenüber dem Nachweis des Doppelbetazerfalls, weil die Radioaktivität der Umgebung milliardenfach stärker ist. Die Detektorkristalle für GERDA und die sie umgebenden Teile wurden daher sehr sorgfältig ausgewählt und verarbeitet.

Zur Beobachtung des äußerst seltenen Prozesses bedarf es außerdem sehr ausgefeilter Techniken, um den Untergrund von kosmischen Teilchen, natürlicher Radioaktivität der Umgebung und sogar dem Experiment selbst weiter zu unterdrücken. Den Wissenschaftlern gelingt das, indem sie die Detektoren in der Mitte einer riesigen „Thermoskanne“ betreiben, die mit extrem reinem flüssigem Argon gefüllt, mit hochreinem Kupfer ausgekleidet und von einem mit Reinstwasser gefüllten Tank von zehn Metern Durchmesser umgeben ist. Dieser Aufbau befindet sich unter 1400 Meter Gestein. Erst die Kombination all dieser Techniken ermöglichte es, den störenden Untergrund auf ein extrem tiefes Niveau zu senken.

Im Herbst 2011 starteten die Messungen mit zunächst acht Detektoren von der Größe einer Getränkedose und jeweils etwa zwei Kilogramm Gewicht; später kamen fünf weitere Detektoren neuer Bauart hinzu. Bis vor kurzem war der Signalbereich in den Daten ausgeblendet, und die Physiker konzentrierten sich auf die Optimierung des Verfahrens zur Datenanalyse. Das Experiment hat jetzt seine erste Phase abgeschlossen.

Die Analyse, für die sämtliche Kalibrierungen und Filter vor Verarbeitung der Daten im Signalbereich definiert waren, ergab kein Signal des neutrinolosen Doppelbetazerfalls in Ge-76, was zu der weltbesten Untergrenze für dessen Halbwertszeit von 2,1 x 1025 Jahren führt. Zusammen mit den Ergebnissen anderer Experimente schließt dieses Resultat eine frühere Behauptung, ein Signal gefunden zu haben, aus.

Damit bleibt zwar die Frage derzeit noch offen, ob Neutrinos ihre eigenen Antiteilchen sind; die neuen Resultate von GERDA haben jedoch interessante Konsequenzen für das Wissen über Neutrinomassen, Erweiterungen des Standardmodells der Elementarteilchenphysik, astrophysikalische Prozesse und Kosmologie.

In einem nächsten Schritt wollen die Forscher zusätzliche neue Detektoren einsetzen und damit die Menge von Ge-76 in GERDA verdoppeln. Sobald einige weitere Verbesserungen zur noch stärkeren Untergrundunterdrückung umgesetzt sind, soll eine zweite Messphase folgen.

GERDA ist eine europäische Kollaboration, die Wissenschaftler aus 16 Forschungsinstituten oder Universitäten in Deutschland, Italien, Russland, der Schweiz, Polen und Belgien umfasst. In Deutschland sind die Max-Planck-Institute für Kernphysik in Heidelberg und für Physik in München, die Technische Universität München, die Universität Tübingen und die Technische Universität Dresden beteiligt. Die Max-Planck-Gesellschaft ist wesentlicher Geldgeber des Projekts; die Universitäten werden vom BMBF und der DFG unterstützt.

Originalveröffentlichung:
Results of neutrinoless double beta decay of 76Ge from GERDA Phase arXiv, 16. Juli 2013
Ansprechpartner:
Dr. Gertrud Hönes
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon: +49 6221 516-572
E-Mail: oea@­mpi-hd.mpg.de
Silke Zollinger
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Physik, München
Telefon: +49 89 32354-292
E-Mail: silke.zollinger@­mpp.mpg.de
Prof. Manfred Lindner
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon: +49 6221 516-800
E-Mail: lindner@­mpi-hd.mpg.de
Dr. Béla Majorovits
Max-Planck-Institut für Physik, München
Telefon: +49 89 32354-262
E-Mail: bela@­mppmu.mpg.de
Prof. Stefan Schönert
TU München
Tel.: 089 289 12511
E-Mail: schoenert@ph.tum.de
Prof. Peter Grabmayr
Uni Tübingen
Tel.: 07071 297 4450
E-Mail: grabmayr@uni-tuebingen.de
Prof. Kai Zuber
TU Dresden
Tel.: 0351 463 42250
E-Mail: zuber@physik.tu-dresden.de

Dr Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie