Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spektroskopie höchster Präzision mit gefrorenen hochgeladenen Ionen

13.03.2015

Wissenschaftler des Heidelberger Max-Planck-Instituts für Kernphysik, der Physikalisch-Technischen Bundesanstalt in Braunschweig und der Universität Aarhus in Dänemark haben erstmals die Coulomb-Kristallisierung von hochgeladenen Ionen (Highly-Charged Ions = HCIs) demonstriert. In einer ultrakalten (oder: kryogenen) Radiofrequenz-Ionenfalle wurden HCIs durch Wechselwirkung mit lasergekühlten Beryllium-Ionen auf Temperaturen unterhalb von 1 Kelvin gekühlt. Die neue Methode eröffnet das Feld der Laserspektroskopie von HCIs und bildet die Grundlage für neuartige Atomuhren und hochpräzise Tests der Variabilität von Naturkonstanten. [Science, 13. März 2015]

Bei sehr hohen Temperaturen können Atome einen Großteil ihrer Elektronen verlieren und werden so zu hochgeladenen Ionen (Highly-Charged Ions = HCIs). Diese stellen eine umfangreiche Klasse atomarer Systeme dar und bieten mannigfaltige neue Möglichkeiten für Hochpräzisions-Studien in der Metrologie und Astrophysik bis hin zur Suche nach „Neuer Physik“ jenseits des Standardmodells der Teilchenphysik.


CCD-Bilder von Be+-Ionenkristallen in der CryPTEx-Paulfalle.

Grafik: MPI für Kernphysik


Experimenteller Aufbau zur Erzeugung, Speicherung und Kühlung hochgeladener Ionen (HCIs, hier: Ar13+).

Grafik: MPI für Kernphysik

Laserspektroskopie an kalten Atomen oder Ionen in niedrigen Ladungszuständen hat sich in den letzten Jahrzehnten zur mächtigsten Methode für Hochpräzisionsmessungen entwickelt. Jedoch war diese bislang auf wenige atomare bzw. ionische Spezies beschränkt und die Präparation kalter HCIs ist heutzutage eine der großen Herausforderungen in der Atomphysik.

Das wesentliche Hindernis liegt in der außergewöhnlichen Art und Weise der Produktion von HCIs bei einer Temperatur von mehreren Millionen Grad. Um andererseits die Stärke der Laserspektroskopie auszuspielen, sind Temperaturen von weniger als einem Grad über dem absoluten Nullpunkt erforderlich: Die thermische Energie der Ionen muss demnach um einen Faktor von mindestens 10 Millionen reduziert werden.

In einem Kooperationsprojekt des Heidelberger Max-Planck-Instituts für Kernphysik (MPIK), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universität Aarhus gelang es einem Team von Physikern, HCIs im Vakuum auf Temperaturen unterhalb von 1 Kelvin abzukühlen und dabei deren Bewegung einzufrieren, sodass sie einen sogenannten Coulomb-Kristall formen.

Das Verfahren hierzu wurde erstmals am MPIK in der Gruppe um José Crespo López-Urrutia demonstriert. Lisa Schmöger, die im Rahmen ihrer Doktorarbeit die Abbremseinheit aufgebaut und das Experiment durchgeführt hat, erklärt die dreistufige Prozedur (Abb. 1): Zuerst werden HCIs in einer speziellen Ionenfalle, genannt Hyper-EBIT, innerhalb eines dichten und energiereichen Elektronenstrahls bei einer Temperatur von mehreren Millionen Grad und unter extremen Vakuumbedingungen erzeugt und eingeschlossen (1).

Einzelne Pakete von HCIs werden dann aus der Falle extrahiert und in einem evakuierten Strahlrohr beim Durchlaufen eines gepulsten linearen Abbremspotentials verlangsamt und vorgekühlt (2). Die Ionen werden sehr behutsam transportiert und schließlich in der kryogenen Radiofrequenz-Paulfalle CryPTEx gespeichert, die am MPIK in Zusammenarbeit mit der Gruppe von Michael Drewsen (Aarhus) aufgebaut worden ist (3).

In der Falle pendeln die HCIs zwischen Spiegelelektroden hin und her, wobei sie langsam an Geschwindigkeit verlieren, bevor sie in einer lasergekühlten Wolke leichter Ionen (einfach geladenes Beryllium) eingebettet werden. Gleich einem Kältebad bewirkt dies nun das indirekte (sympathetische) Kühlen der HCIs.

In einer Radiofrequenzfalle sind die durch die äußeren elektrischen Felder eingeschlossenen Ionen in der Vakuumkammer gezwungen, sich ein kleines Volumen zu teilen, wobei sie sich gegenseitig elektrisch abstoßen. Zusätzlich wird diese millimetergroße Wolke von Beryllium-Ionen mit einem speziellen Laser gekühlt, sodass sie schließlich ausfrieren und einen Coulomb-Kristall bilden, sobald ihre thermische Bewegung gegenüber ihrer Abstoßung vernachlässigbar wird. Hierzu kamen am MPIK ausgeklügelte Lasersysteme zum Einsatz, die an der PTB von Oskar Versolato und seinen Kollegen aufgebaut worden waren. Sobald die HCIs innerhalb des lasergekühlten Ionenensembles genügend abgekühlt sind, kristallisieren sie ebenfalls und können in verschiedener Anordnung gespeichert werden.

Abb. 2a zeigt einen reinen Beryllium-Kristall aus etwa 1500 Ionen, aufgenommen von einer CCD-Kamera, welche das von den einzelnen Ionen emittierte Fluoreszenzlicht des Kühllasers nachweist. In Abb. 2b erscheinen fünf gefangene Ar13+-Ionen als eine Kette von dunklen „Löchern“, da sie selbst nicht leuchten, aber die sie umgebenden Beryllium-Ionen verdrängen. Abb. 2c zeigt einen Kristall aus 29 Beryllium-Ionen mit einem einzelnen Ar13+-Ion im Zentrum. Der extreme Fall von nur je einem verbliebenen Ion beider Sorten (mit dem unsichtbaren Ar13+-Ion in der Mitte) ist in Abb. 2d demonstriert.

Derartige Ionenpaare bilden die Basis für Quantenuhren und Quantenlogik-Spektroskopie – eine Technik, die Piet Schmidt, Gruppenleiter an der PTB, während seines Aufenthalts im Labor von Nobelpreisträger Dave Wineland am NIST (Boulder, USA) entwickelt hat. Hierbei liefert das „Spektroskopie-Ion“ den hochpräzisen optischen atomaren Übergang, welcher die Ganggenauigkeit der Uhr auf 17 Dezimalstellen hält.

Dieses ist quantenmechanisch mit einem „Logik-Ion“ verknüpft, welches zugleich zur Kühlung und zum Auslesen des Spektroskopie-Ions dient: Laserpulse erlauben dem fluoreszierenden Logik-Ion, den Quantenzustand des unsichtbaren Nachbar-Ions wahrzunehmen und in Abhängigkeit von dessen Anregungszustand die eigene Fluoreszenzrate stark zu verändern. José Crespo López-Urrutia erklärt dies mit folgender Analogie: „Bei diesem Quanten-Ehepaar nehmen beide Partner alles gemeinsam wahr, aber während eine der beiden Personen gar nicht sprechen kann, tut dies die andere umso mehr – und Sie fragen einfach die gesprächigere von beiden.“

Die effiziente Kühlung gefangener HCIs eröffnet ein neues Feld in der Laserspektroskopie: Präzisionstests der Quantenelektrodynamik, Messung von Kerneigenschaften und Laborastrophysik. HCIs sind ziemlich unempfindlich gegenüber thermischen Verschiebungen der Strahlungsfrequenz und anderen systematischen Effekten, welche die Genauigkeit einer Atomuhr begrenzen, und versprechen somit zukünftige Anwendungen für neuartige optische Uhren mittels Quantenlogik-Spektroskopie.

Das ehrgeizigste Ziel der Zusammenarbeit von MPIK und PTB ist der Test der Zeitabhängigkeit von Naturkonstanten wie z. B. der Feinstrukturkonstante α, welche die Stärke der elektromagnetischen Wechselwirkung bestimmt. Laut Theorie ist für Laserspektroskopie 17-fach geladenes Iridium der empfindlichste Kandidat, um die zeitliche Veränderung von α zu testen. Zur Vorbereitung dieser zukünftigen Untersuchungen wird von der PTB ein neues hochstabiles Lasersystem am MPIK installiert – zunächst, um diese Technik anhand des besser bekannten Ar13+ vorzuführen. Die jungen Wissenschaftler können es kaum erwarten, mit diesem Werkzeug und der neuen Kühlmethode zu spielen.

Originalpublikation:

Coulomb crystallization of highly charged ions
L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, J. R. Crespo López-Urrutia
Science, 13. März 2015 10.1126/science.aaa2960

Kontakt:

Lisa Schmöger
MPI für Kernphysik
Tel.: +49 6221 516-331
E-Mail: lisa.schmoeger@mpi-hd.mpg.de

Dr. José R. Crespo-López Urrutia
MPI für Kernphysik
Tel.: +49 6221 516-521
E-Mail: jose.crespo@mpi-hd.mpg.de

Prof. Dr. Piet O. Schmidt
QUEST Institute for Experimental Quantum Metrology
Physikalisch-Technische Bundesanstalt
Tel.: +49 531 592 4700
E-Mail: piet.schmidt@ptb.de

Prof. Dr. Michael Drewsen
The Ion Trap Group
QUANTOP - Danish National Research Foundation's Center for Quantum Optics
Department of Physics and Astronomy, Aarhus University
Tel.: +45 8715 5679
E-Mail: drewsen@phys.au.dk

Weitere Informationen:

http://www.mpi-hd.mpg.de/pfeifer/page.php?id=36 EBIT-Gruppe, MPIK

http://www.quantummetrology.de/quest/eqm/cetest-firstpage.html Quantenlogik-Spektroskopie, PTB

http://phys.au.dk/en/research/research-areas/amo/the-ion-trap-group/ Ionenfallen-Gruppe, U Aarhus

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Antibiotikaresistenzen: Ein multiresistenter Escherichia coli-Stamm auf dem Vormarsch

23.10.2017 | Biowissenschaften Chemie

Sturmfeder bekämpft Orkanschäden

23.10.2017 | Maschinenbau

Vorstellung eines neuen Zellkultursystems für die Analyse von OPC-Zellen im Zebrafisch

23.10.2017 | Biowissenschaften Chemie