Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spektroskopie höchster Präzision mit gefrorenen hochgeladenen Ionen

13.03.2015

Wissenschaftler des Heidelberger Max-Planck-Instituts für Kernphysik, der Physikalisch-Technischen Bundesanstalt in Braunschweig und der Universität Aarhus in Dänemark haben erstmals die Coulomb-Kristallisierung von hochgeladenen Ionen (Highly-Charged Ions = HCIs) demonstriert. In einer ultrakalten (oder: kryogenen) Radiofrequenz-Ionenfalle wurden HCIs durch Wechselwirkung mit lasergekühlten Beryllium-Ionen auf Temperaturen unterhalb von 1 Kelvin gekühlt. Die neue Methode eröffnet das Feld der Laserspektroskopie von HCIs und bildet die Grundlage für neuartige Atomuhren und hochpräzise Tests der Variabilität von Naturkonstanten. [Science, 13. März 2015]

Bei sehr hohen Temperaturen können Atome einen Großteil ihrer Elektronen verlieren und werden so zu hochgeladenen Ionen (Highly-Charged Ions = HCIs). Diese stellen eine umfangreiche Klasse atomarer Systeme dar und bieten mannigfaltige neue Möglichkeiten für Hochpräzisions-Studien in der Metrologie und Astrophysik bis hin zur Suche nach „Neuer Physik“ jenseits des Standardmodells der Teilchenphysik.


CCD-Bilder von Be+-Ionenkristallen in der CryPTEx-Paulfalle.

Grafik: MPI für Kernphysik


Experimenteller Aufbau zur Erzeugung, Speicherung und Kühlung hochgeladener Ionen (HCIs, hier: Ar13+).

Grafik: MPI für Kernphysik

Laserspektroskopie an kalten Atomen oder Ionen in niedrigen Ladungszuständen hat sich in den letzten Jahrzehnten zur mächtigsten Methode für Hochpräzisionsmessungen entwickelt. Jedoch war diese bislang auf wenige atomare bzw. ionische Spezies beschränkt und die Präparation kalter HCIs ist heutzutage eine der großen Herausforderungen in der Atomphysik.

Das wesentliche Hindernis liegt in der außergewöhnlichen Art und Weise der Produktion von HCIs bei einer Temperatur von mehreren Millionen Grad. Um andererseits die Stärke der Laserspektroskopie auszuspielen, sind Temperaturen von weniger als einem Grad über dem absoluten Nullpunkt erforderlich: Die thermische Energie der Ionen muss demnach um einen Faktor von mindestens 10 Millionen reduziert werden.

In einem Kooperationsprojekt des Heidelberger Max-Planck-Instituts für Kernphysik (MPIK), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universität Aarhus gelang es einem Team von Physikern, HCIs im Vakuum auf Temperaturen unterhalb von 1 Kelvin abzukühlen und dabei deren Bewegung einzufrieren, sodass sie einen sogenannten Coulomb-Kristall formen.

Das Verfahren hierzu wurde erstmals am MPIK in der Gruppe um José Crespo López-Urrutia demonstriert. Lisa Schmöger, die im Rahmen ihrer Doktorarbeit die Abbremseinheit aufgebaut und das Experiment durchgeführt hat, erklärt die dreistufige Prozedur (Abb. 1): Zuerst werden HCIs in einer speziellen Ionenfalle, genannt Hyper-EBIT, innerhalb eines dichten und energiereichen Elektronenstrahls bei einer Temperatur von mehreren Millionen Grad und unter extremen Vakuumbedingungen erzeugt und eingeschlossen (1).

Einzelne Pakete von HCIs werden dann aus der Falle extrahiert und in einem evakuierten Strahlrohr beim Durchlaufen eines gepulsten linearen Abbremspotentials verlangsamt und vorgekühlt (2). Die Ionen werden sehr behutsam transportiert und schließlich in der kryogenen Radiofrequenz-Paulfalle CryPTEx gespeichert, die am MPIK in Zusammenarbeit mit der Gruppe von Michael Drewsen (Aarhus) aufgebaut worden ist (3).

In der Falle pendeln die HCIs zwischen Spiegelelektroden hin und her, wobei sie langsam an Geschwindigkeit verlieren, bevor sie in einer lasergekühlten Wolke leichter Ionen (einfach geladenes Beryllium) eingebettet werden. Gleich einem Kältebad bewirkt dies nun das indirekte (sympathetische) Kühlen der HCIs.

In einer Radiofrequenzfalle sind die durch die äußeren elektrischen Felder eingeschlossenen Ionen in der Vakuumkammer gezwungen, sich ein kleines Volumen zu teilen, wobei sie sich gegenseitig elektrisch abstoßen. Zusätzlich wird diese millimetergroße Wolke von Beryllium-Ionen mit einem speziellen Laser gekühlt, sodass sie schließlich ausfrieren und einen Coulomb-Kristall bilden, sobald ihre thermische Bewegung gegenüber ihrer Abstoßung vernachlässigbar wird. Hierzu kamen am MPIK ausgeklügelte Lasersysteme zum Einsatz, die an der PTB von Oskar Versolato und seinen Kollegen aufgebaut worden waren. Sobald die HCIs innerhalb des lasergekühlten Ionenensembles genügend abgekühlt sind, kristallisieren sie ebenfalls und können in verschiedener Anordnung gespeichert werden.

Abb. 2a zeigt einen reinen Beryllium-Kristall aus etwa 1500 Ionen, aufgenommen von einer CCD-Kamera, welche das von den einzelnen Ionen emittierte Fluoreszenzlicht des Kühllasers nachweist. In Abb. 2b erscheinen fünf gefangene Ar13+-Ionen als eine Kette von dunklen „Löchern“, da sie selbst nicht leuchten, aber die sie umgebenden Beryllium-Ionen verdrängen. Abb. 2c zeigt einen Kristall aus 29 Beryllium-Ionen mit einem einzelnen Ar13+-Ion im Zentrum. Der extreme Fall von nur je einem verbliebenen Ion beider Sorten (mit dem unsichtbaren Ar13+-Ion in der Mitte) ist in Abb. 2d demonstriert.

Derartige Ionenpaare bilden die Basis für Quantenuhren und Quantenlogik-Spektroskopie – eine Technik, die Piet Schmidt, Gruppenleiter an der PTB, während seines Aufenthalts im Labor von Nobelpreisträger Dave Wineland am NIST (Boulder, USA) entwickelt hat. Hierbei liefert das „Spektroskopie-Ion“ den hochpräzisen optischen atomaren Übergang, welcher die Ganggenauigkeit der Uhr auf 17 Dezimalstellen hält.

Dieses ist quantenmechanisch mit einem „Logik-Ion“ verknüpft, welches zugleich zur Kühlung und zum Auslesen des Spektroskopie-Ions dient: Laserpulse erlauben dem fluoreszierenden Logik-Ion, den Quantenzustand des unsichtbaren Nachbar-Ions wahrzunehmen und in Abhängigkeit von dessen Anregungszustand die eigene Fluoreszenzrate stark zu verändern. José Crespo López-Urrutia erklärt dies mit folgender Analogie: „Bei diesem Quanten-Ehepaar nehmen beide Partner alles gemeinsam wahr, aber während eine der beiden Personen gar nicht sprechen kann, tut dies die andere umso mehr – und Sie fragen einfach die gesprächigere von beiden.“

Die effiziente Kühlung gefangener HCIs eröffnet ein neues Feld in der Laserspektroskopie: Präzisionstests der Quantenelektrodynamik, Messung von Kerneigenschaften und Laborastrophysik. HCIs sind ziemlich unempfindlich gegenüber thermischen Verschiebungen der Strahlungsfrequenz und anderen systematischen Effekten, welche die Genauigkeit einer Atomuhr begrenzen, und versprechen somit zukünftige Anwendungen für neuartige optische Uhren mittels Quantenlogik-Spektroskopie.

Das ehrgeizigste Ziel der Zusammenarbeit von MPIK und PTB ist der Test der Zeitabhängigkeit von Naturkonstanten wie z. B. der Feinstrukturkonstante α, welche die Stärke der elektromagnetischen Wechselwirkung bestimmt. Laut Theorie ist für Laserspektroskopie 17-fach geladenes Iridium der empfindlichste Kandidat, um die zeitliche Veränderung von α zu testen. Zur Vorbereitung dieser zukünftigen Untersuchungen wird von der PTB ein neues hochstabiles Lasersystem am MPIK installiert – zunächst, um diese Technik anhand des besser bekannten Ar13+ vorzuführen. Die jungen Wissenschaftler können es kaum erwarten, mit diesem Werkzeug und der neuen Kühlmethode zu spielen.

Originalpublikation:

Coulomb crystallization of highly charged ions
L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, J. R. Crespo López-Urrutia
Science, 13. März 2015 10.1126/science.aaa2960

Kontakt:

Lisa Schmöger
MPI für Kernphysik
Tel.: +49 6221 516-331
E-Mail: lisa.schmoeger@mpi-hd.mpg.de

Dr. José R. Crespo-López Urrutia
MPI für Kernphysik
Tel.: +49 6221 516-521
E-Mail: jose.crespo@mpi-hd.mpg.de

Prof. Dr. Piet O. Schmidt
QUEST Institute for Experimental Quantum Metrology
Physikalisch-Technische Bundesanstalt
Tel.: +49 531 592 4700
E-Mail: piet.schmidt@ptb.de

Prof. Dr. Michael Drewsen
The Ion Trap Group
QUANTOP - Danish National Research Foundation's Center for Quantum Optics
Department of Physics and Astronomy, Aarhus University
Tel.: +45 8715 5679
E-Mail: drewsen@phys.au.dk

Weitere Informationen:

http://www.mpi-hd.mpg.de/pfeifer/page.php?id=36 EBIT-Gruppe, MPIK

http://www.quantummetrology.de/quest/eqm/cetest-firstpage.html Quantenlogik-Spektroskopie, PTB

http://phys.au.dk/en/research/research-areas/amo/the-ion-trap-group/ Ionenfallen-Gruppe, U Aarhus

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit
21.08.2017 | Universität Leipzig

nachricht Topologische Quantenzustände einfach aufspüren
21.08.2017 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Studie für Patienten mit Prostatakrebs: Einteilung in genomische Gruppen soll Therapie präzisieren

21.08.2017 | Interdisziplinäre Forschung

Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit

21.08.2017 | Physik Astronomie

Ein neuer Indikator für marine Ökosystem-Veränderungen - der Dia/Dino-Index

21.08.2017 | Ökologie Umwelt- Naturschutz