Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spektakuläre Doppelexplosion am Sternenhimmel

11.08.2014

Der Riesenstern Beteigeuze wird sein Leben in naher Zukunft vermutlich mit einem gewaltigen Doppelschlag beenden.

Das schreiben Astronomen der Universität Bonn in einer Publikation, die jetzt in der Zeitschrift Nature erschienen ist. Die Explosionen könnten so stark sein, dass sie von der Erde aus am Taghimmel sichtbar sind.


Beim Flug durch das All schiebt Beteigeuze eine Bugwelle aus Materie vor sich her - im Bild als "bow shock" zu sehen. (c) ESA / Herschel / PACS / L. Decin et al.

Seit 2012 ist bekannt, dass der 600 Lichtjahre entfernte Rote Superriese von einer Hülle aus Materie umgeben ist. Die Bonner Forscher erklären in ihrer Studie, wie diese Hülle entstanden sein könnte. Zunächst wird Beteigeuze in einer Supernova verglühen. Wenige Monate später wird die Hülle für die spektakuläre zweite Explosion sorgen.

Beteigeuze hat den 600fachen Durchmesser der Sonne. Am Nachthimmel ist er der zehnthellste Stern. Astronomen erwarten, dass er in naher Zukunft explodieren wird.

so hell wie der Mond. Wahrscheinlich ist die Explosion sogar tagsüber von der Erde sichtbar. Wann es soweit ist, lässt sich nicht genau sagen., erklärt der Bonner Astronom Dr. Jonathan Mackey.

Der Nature-Studie zufolge wird es vermutlich nicht bei einem Rumms bleiben. Denn Beteigeuze ist von einer Hülle aus Materie umgeben. „Das Material in dieser Hülle summiert sich auf ein Zehntel der Sonnenmasse“, sagt Dr. Mackey.

Bei der Supernova-Explosion werden die äußeren Schichten von Beteigeuze abgesprengt und ins All geschleudert. Diese Sternenfragmente rasen mit vielen tausend Kilometern pro Sekunde auf die Materiehülle zu. Nach einigen Monaten bis maximal drei Jahren kommt es dort zu einem riesigen Crash, der auf der Erde als weitere Explosion sichtbar werden dürfte.

Rätselhafte Materiehülle

Dass es diese Materiehülle um Beteigeuze gibt, ist erst seit 2012 bekannt. Ihre Entstehung gab den Astronomen bislang Rätsel auf. Mackey und seine Kollegen legen in ihrem Nature-Paper eine plausible Hypothese vor. Schon lange ist bekannt, dass Rote Riesen (wie andere Sterne auch) von ihrer Oberfläche ständig Materie ins All schleudern – den Sternenwind.

Die Strahlung des interstellaren Mediums erhitzt diesen Sternenwind, wie die Bonner Forscher unter anderem in Computersimulationen zeigen konnten. Diese Hitze erzeugt eine Schockwelle, die den Wind abbremst. So entsteht in einiger Entfernung um Beteigeuze eine nahezu bewegungslose Hülle aus ehemaligem Sternenmaterial.

Dieser Vorgang sollte nach den Bonner Überlegungen auch bei anderen Roten Superriesen auftreten. Die Materieansammlungen könnten dort sogar noch erheblich größer sein – die Forscher rechnen mit bis zu fünf Sonnenmassen. Das könnte erklären, warum Supernova-Explosionen mitunter 10- bis 100-mal heller sind als theoretisch zu erwarten. Denn wenn die Reste des explodierten Sterns in eine derart dichte Materiehülle rasen, wäre eine zweite Explosion gewaltigen Ausmaßes die Folge.

Supernovae sollten in der Milchstraße im Schnitt etwa alle hundert Jahre zu beobachten sein. In unserer Nachbargalaxie, der Großen Magellanschen Wolke, wurde am 24. Februar 1987 eine Supernova-Explosion entdeckt. Trotz der großen Entfernung von 160.000 Lichtjahren war sie auf der Südhalbkugel ebenfalls mit bloßem Auge sichtbar, allerdings nur nachts.

Die letzte Supernova-Explosion in der Milchstraße liegt schon ein Weilchen zurück: Italienische Himmelskundler bemerkten im Oktober 1604 einen neuen Himmelskörper, der alle anderen Sterne überstrahlte. Der deutsche Astronom Johannes Kepler beschrieb das Phänomen ausführlich; daher wurde die Supernova nach ihm benannt. Die Explosion von Beteigeuze dürfte für Erdenbewohner um Einiges spektakulärer sein – der Rote Superriese liegt uns 30mal näher als Keplers Supernova.

Publikation:

Jonathan Mackey, Shazrene Mohamed, Vasilii V. Gvaramadze, Rubina Kotak, Norbert Langer, Dominique M.-A. Meyer, Takashi J. Moriya & Hilding R. Neilson: Interacting supernovae from photoionization-confined shells around red supergiants: DOI: 10.1038/nature13522.

Kontakt:

Dr. Jonathan Mackey
Argelander-Institut für Astronomie der Universität Bonn
Telefon: 0228/73-3783
E-Mail: jmackey@astro.uni-bonn.de

Prof. Dr. Norbert Langer
Argelander-Institut für Astronomie der Universität Bonn
Telefon: 0228/73-3656
E-Mail: nlanger@astro.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie