Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spektakuläre Aspekte von auf Lichtgeschwindigkeit oder darüber beschleunigten Neutrinos

24.10.2011
Im September 2011 wurde ein Neutrinostrahl vom CERN-Labor in der Schweiz, Switzerland zum INFN Gran Sasso-Labor in Italien geschickt.

Dabei schien dieser die Entfernung von 730 km durch die Erde mit 0,0025 Prozent über Vakuumlichtgeschwindigkeit zurückzulegen. Einige unbestrittenen Säulen der klassischen Physik werden komplett ins Wanken geraten, falls sich dieses Experiment als wiederholbar herausstellt. Tatsächlich lassen Einsteins Theorien die Existenz unentdeckbarer Partikel zu, die sich schneller als Licht bewegen.

Diese Partikel werden als Tachyonen bezeichnet. Es besteht allerdings keine Möglichkeit, solche theoretischen Tachyonen als ein Transportmedium für Informationen zu nutzen. Einsteins maximale Informationsgeschwindigkeit ist eindeutig auf die Lichtgeschwindigkeit begrenzt. Der spektakuläre Aspekt eines solchen entdeckbaren Neutrinostrahls wäre weniger die Erkenntnis, dass Neutrinos tatsächlich Tachyonen sind, sondern die Entdeckung einer Informationsgeschwindigkeit jenseits der Lichtgeschwindigkeitsgrenze.

Da Beobachtungen von Supernovaexplosionen keine Neutrinostrahlen lange vor der Ankunft der bei diesen kosmischen Katastrophen freigesetzten Photonen registrierten, ist das CERN-Experiment sehr kritisch zu prüfen. Neutrinos der Supernova 1987a wurden vom Detektor des Kamioka Nucleon Decay Experiments in Japan entdeckt. Dass die Neutrinos die Erde aber nur etwa drei Stunden vor dem Licht dieses Supernovaereignisses erreichten, wird auf die Tatsache zurückgeführt, dass das Licht kurzzeitig in der Supernova gefangen war. Daraus wäre zu schließen, dass sich Neutrinos eher mit Lichtgeschwindigkeit bewegen. Falls die CERN-Ergebnisse korrekt sind, hätten die Neutrinos Jahre anstatt Stunden vor dem Licht der Supernova ankommen sollen.

Es gibt zwei recht einfache Erklärungen für diesen scheinbaren experimentellen Widerspruch zu Einsteins Begrenzung der Vakuumlichtgeschwindigkeit und seiner Annahme, dass baryonische Materie diese Barriere nicht erreichen kann, da ihre Masse relativistisch zunimmt und deswegen eine unendliche Energiemenge erforderlich wäre.

1) Falls das Experiment nicht wiederholbar ist, handelt es sich um einen bisher unbekannten Fehler in der Auswertungsmethode, da Neutrinos kaum Wechselwirkungen mit Materie haben und daher extrem schwierig zu entdecken sind.

2) Falls das Experiment wiederholbar ist oder sich Neutrinos exakt mit Lichtgeschwindigkeit bewegen, wäre die einfachste Erklärung, dass es sich bei dem vierdimensionalen Raum-Zeit-Kontinuum nicht wie von Einstein angenommen um ein reines geometrisches Raster handelt, sondern um ein besonderes energetisches Speichermedium, das der klassischen Physik bisher entgangen ist. Die bekannte Tatsache über ein Medium ist, dass bestimmte Partikel es mit Überlichtgeschwindigkeit durchqueren können und dabei normalerweise Lichtphänomene erzeugen, die als Tscherenkow-Strahlung bekannt sind.

Dieser Tscherenkow-Effekt ist mit dem akustischen Knall vergleichbar, den ein Überschallflugzeug erzeugt. Falls sich Neutrinos mit exakt Lichtgeschwindigkeit oder sogar noch schneller bewegen, könnten sie ihre extrem geringe Masse durch einen ähnlichen Effekt erhalten. Dies würde erklären, warum wir trotz ihrer hohen relativen Geschwindigkeit entgegen den Vorstellungen Einsteins und den Gleichungen für baryonische Massen keine gewaltige relativistische Massenzunahme feststellen.

Aber wie könnte ein so eigenartiges Raum-Zeit-Medium aussehen? Es kann sich auf keinen Fall um die Art von Äther handeln, von dem Lorentz und andere Wissenschaftler noch ausgegangen waren, als Einstein seinen geometrischen Raum-Zeit-Ansatz entwickelte, da die Lichtgeschwindigkeit nicht für alle Beobachter konstant wäre.

Eine erste tragfähige Lösung des Rätsels erscheint, wenn man Einsteins Raum-Zeit-Modell um quantenmechanische Aspekte erweitert und gleichzeitig mit einem Rotationselement der wohlbekannten Relativität der Gleichzeitigkeit verbindet. Dadurch wird das Vakuum des Raums mit einer Art von quantenmechanischem Energieschaum gefüllt. In seiner speziellen und allgemeinen Relativitätstheorie zog Einstein keine Quantifizierung von Zeit und Länge in Betracht, denn eine solche Beschränkung bei verschwindend geringen Werten war zu dieser Zeit noch nicht entdeckt und erörtert. Auch Neutrinos waren noch unbekannt. Erst Jahre später hielten quantenmechanische Aspekte in Form der Heisenbergschen Unschärferelation und der Planck-Skala in der Physik Einzug.

Seit Einsteins Ära wissen wir, dass Ereignisse entlang der Bewegungsachse eines Raumschiffs, die für einen an Bord befindlichen Beobachter gleichzeitig sind, bei hoher relativer Geschwindigkeit von einem zurückbleibenden Beobachter als aufeinanderfolgende Ereignisse wahrgenommen werden, denn die Lichtgeschwindigkeit ist für beide Beobachter konstant und verursacht damit die sogenannte Relativität der Gleichzeitigkeit. Falls wir nun zum Beispiel die Entfernung zwischen zwei gleichzeitig ausgelösten Lichtblitzen auf einen verschwindend geringen Minimalwert begrenzen, würde ein zurückbleibender Beobachter diese gleichzeitigen Ereignisse bei einer bestimmten Geschwindigkeit des Raumschiffs als aufeinanderfolgende Ereignisse wahrnehmen. Dies hat sicherlich eine energetische Wirkung auf den zurückbleibenden Beobachter, denn Einsteins Raum-Zeit-Raster bekommt somit eine Art Energiespeichereffekt auf seiner Zeitachse für den zweiten Lichtblitz. Diese wohlbekannte Funktion von Einsteins spezieller Relativitätstheorie lässt sich mit einem zweidimensionalen Graphen wiedergeben, auf dem die gleichzeitigen Ereignisse auf einer X-Achse und aufeinanderfolgende Ereignisse auf einer Y-Zeitachse dargestellt werden.

Verwandeln wir nun die gleichzeitigen Ereignisse im Einklang mit den bewährten und unbestrittenen Formeln der relativistischen Mechanik in aufeinanderfolgende Ereignisse und unter Berücksichtigung dieses einfachen Quantisierungsschemas an den unteren Grenzwerten von räumlicher Entfernung und zeitlichem Fortschreiten bringen wir quantisierte Rotationselemente in das Gesamtbild ein. Dies führt zu einer erweiterten Raum-Zeit-Struktur mit relativen Speicherzonen für dunkle Energie und dunkle Materie sowie einer tragfähigen Erklärung der eigenartigen Natur und Eigenschaften von Neutrinos, unabhängig davon, ob sich diese exakt mit Lichtgeschwindigkeit, knapp darunter oder unerwarteterweise sogar etwas darüber bewegen.

Pressekontakt:
Henryk Frystacki, PhD
Mitglied der Russischen Akademie der Technischen Wissenschaften, Moskau Externes Vorstandsmitglied des Institute for Gravitation and Cosmos an der Pennstate University, USA Homepage: www.frystacki.de

Telefon: +49 08157924137

Henryk Frystacki | presseportal
Weitere Informationen:
http://www.frystacki.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode zur Analyse von Supraleitern
24.10.2017 | Ruhr-Universität Bochum

nachricht Bildung von Magma-Ozeanen auf Exoplaneten erforscht
24.10.2017 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 65 neue genetische Risikomarker für Brustkrebs entdeckt

Manche Familien sind häufiger von Brustkrebs betroffen als andere. Dies kann bislang nur teilweise durch genetische Risikomarker erklärt werden. In einem weltweiten Verbund haben Forscher nun 65 weitere Erbgutvarianten identifiziert, die zum Brustkrebsrisiko beitragen. Die Studie, an der auch Wissenschaftler vom Deutschen Krebsforschungszentrum und dem Universitätsklinikum Heidelberg beteiligt waren, wurde in der Fachzeitschrift Nature veröffentlicht. Die Forscher erwarten, dass die Ergebnisse dazu beitragen, Screeningprogramme und die Früherkennung von Brustkrebs zu verbessern.

Seit Angelina Jolies medienwirksamer Entscheidung, sich vorbeugend die Brüste entfernen zu lassen, ist der genetische Hintergrund von Brustkrebs auch einer...

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fettstoffwechsel beeinflusst Genaktivität

24.10.2017 | Biowissenschaften Chemie

Forscher der Universität Hamburg entdecken Mechanismus zur Verdopplung von Pflanzengenomen

24.10.2017 | Biowissenschaften Chemie

Bakterielle Toxine im Darm

24.10.2017 | Biowissenschaften Chemie