Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

SPASER-basierte Nanolaser: Optische Bauelemente der Zukunft

04.03.2014

Eine neue Emmy Noether-Forschungsgruppe unter der Leitung von Junior-Prof. Dr. Matthias Karg wird in den nächsten fünf Jahren an der Universität Bayreuth die Grundlagen für neuartige Nanolaser erforschen.

Die Entwicklung des Lasers hat seit den 1960er Jahren auf zahlreichen Gebieten – beispielsweise in der Medizin oder den elektronischen Medien – zu technologischen Innovationen geführt, die aus dem Lebensalltag nicht mehr wegzudenken sind.

Junior-Prof. Dr. Matthias Karg

Junior-Prof. Dr. Matthias Karg leitet die neu eingerichtete Emmy Noether-Forschungsgruppe an der Universität Bayreuth.

Foto: Junior-Prof. Dr. Matthias Karg, Universität Bayreuth; zur Veröffentlichung frei

Eine aktuelle Herausforderung liegt derzeit in der Miniaturisierung der Laserquellen. Besonders in Anwendungsbereichen wie der optischen Datenverarbeitung und der hochauflösenden Mikroskopie besteht ein starkes Interesse an Lasern, die deutlich kleiner sind als klassische Laser. Deren Lichtquellen haben meistens Abmessungen von mindestens einigen Zentimetern.

Daher gewinnen Forschungsarbeiten rasant an Bedeutung, die auf die Entwicklung von Nanolasern abzielen, also von Laserlichtquellen mit Abmessungen im Nanometerbereich. Idealerweise besteht ein Nanolaser aus einem einzigen Nanoteilchen, das etwa 500-mal kleiner ist als die Dicke eines menschlichen Haares.

An der Universität Bayreuth wird Junior-Prof. Dr. Matthias Karg in den nächsten fünf Jahren eine Emmy Noether-Forschungsgruppe leiten, welche die Grundlagenforschung auf diesem Gebiet weiter vorantreiben wird. 

Das Emmy Noether-Programm der Deutschen Forschungsgemeinschaft (DFG) richtet sich fächerübergreifend an hervorragende Nachwuchswissenschaftlerinnen und -wissenschaftler. Es bietet ihnen die Chance, ein junges Forschungsteam an einer deutschen Universität über mehrere Jahre hinweg erfolgreich zu leiten und sich dadurch für die Übernahme einer Professur zu qualifizieren.

Junior-Prof. Dr. Matthias Karg ist 2011 nach einem zweijährigen Postdoc-Aufenthalt von der Universität Melbourne in Australien an die Universität Bayreuth gewechselt. Im Jahr 2012 wurde er hier zum Juniorprofessor für Kolloidale Systeme berufen. Seine Arbeitsgruppe ist auf dem Gebiet der Polymer- und Kolloidforschung in der Physikalischen Chemie tätig und befasst sich mit neuen, optisch aktiven Funktionsmaterialien.

„Es freut mich sehr, dass ich durch die Förderung aus dem Emmy Noether-Programm jetzt die Möglichkeit habe, diese vielversprechenden Forschungsarbeiten erheblich auszubauen und weiterzuführen – gemeinsam mit einer Gruppe hochmotivierter Doktorandinnen und Doktoranden“, erklärt Prof. Karg. „Wir werden uns dabei auf ein sehr spannendes Gebiet vorwagen. Dabei wollen wir die Grundlagen für einen neuartigen Typ von Nanolasern erforschen, die eines Tages auf manchen Technologiefeldern geradezu revolutionäre Folgen haben könnten – beispielsweise in der Sensorik, bei optischen Computern und bei der hochauflösenden Mikroskopie. Die Besonderheit der Nanolaser liegt dabei nicht zuletzt in der Möglichkeit, durch nanoskalige optische Bauteile die Beugungsgrenze zu überwinden.“

Diese neuartigen Nanolaser nutzen den so genannten „SPASER-Effekt“. Die Abkürzung steht für „Surface Plasmon Amplification by Stimulated Emission of Radiation“. Während in einem konventionellen Laser Photonen verstärkt werden, ist ein SPASER in der Lage, gleiche Oberflächenplasmonen gezielt anzuregen und zu verstärken. Oberflächenplasmonen sind kollektive Schwingungen der Leitungselektronen in metallischen Strukturen, wie beispielsweise in Gold- und Silbernanopartikeln. Die Bayreuther Forschergruppe will leuchtstarke Fluorophore daraufhin untersuchen, unter welchen Bedingungen sie diese Schwingungen verstärken können.

„Weltweit besteht heute ein enormes Interesse an den materialwissenschaftlichen und physikalischen Grundlagen solcher SPASER-basierten Nanolaser. Allerdings bedarf es sehr anspruchsvoller spektroskopischer Methoden und einer ausgeprägten interdisziplinären Zusammenarbeit, um die vielen noch offenen Fragen zu beantworten“, erläutert Prof. Karg. „Die Universität Bayreuth bietet uns hier ideale Voraussetzungen. Es existieren hervorragend ausgestattete Laboratorien, die auf die Synthese, Charakterisierung und Funktionalisierung nanostrukturierter Materialien ausgerichtet sind. Darüber hinaus steht hier eine außergewöhnliche Vielfalt von Methoden zur Verfügung, die für die Charakterisierung und Verarbeitung komplexer Kolloide sowie für deren theoretische Beschreibung von Bedeutung sind.“

Thematisch schlägt das Forschungsprojekt der Bayreuther Emmy Noether-Gruppe die Brücke von der klassischen Kolloidchemie zur experimentellen und theoretischen Physik. Damit gliedert sich das Projekt ideal in das Profilfeld „Polymer- und Kolloidforschung“ der Universität Bayreuth ein und wird dieses gleichzeitig durch ein neues, innovatives Forschungsgebiet weiter verstärken. Weiterhin existieren dabei zahlreiche fachliche Bezüge zu dem hier angesiedelten DFG-Sonderforschungsbereich „Von partikulären Nanosystemen zur Mesotechnologie“. Das Bayreuther Institut für Makromolekülforschung (BIMF) sowie das Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG) werden die Arbeitsgruppe durch ihre besondere Infrastruktur und durch ein weitverzweigtes Netz internationaler Forschungskontakte unterstützen.

Ansprechpartner:

Prof. Dr. Matthias Karg
Juniorprofessur für Kolloidale Systeme
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (921) 55-3920
E-Mail: matthias.karg@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gefäßregeneration: Wie sich Wunden schließen

12.12.2017 | Medizin Gesundheit

Mit Drohnen Wildschweinschäden schätzen

12.12.2017 | Ökologie Umwelt- Naturschutz

Tumoren ordentlich einheizen

12.12.2017 | Biowissenschaften Chemie