Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum der Sonnenwind rautenförmig ist

15.11.2011
Temperatur- und Energiegleichverteilung in kosmischen Plasmen erklärt / RUB-Forscher berichten in Physical Review Letters

Warum die Temperaturen im Sonnenwind in bestimmten Richtungen nahezu gleich sind und wieso verschiedene Energiedichten beinahe identisch sind, war bislang völlig unverstanden. Mit einem neuen Ansatz zur Berechnung von Instabilitätskriterien für Plasmen lösten Bochumer Forscher um Prof. Dr. Reinhard Schlickeiser (Lehrstuhl für Theoretische Physik IV) beide Probleme auf einmal.


Sonnenwinddaten: Das Plasmabeta repräsentiert das Verhältnis von kinetischem zu magnetischem Druck im kosmischen Plasma. Die Anisotropie ist das Verhältnis der Temperaturen senkrecht und parallel zu den Magnetfeldlinien. In Farbe wird die Zahl der Messwerte dargestellt (rot entspricht vielen Werten, blau wenigen). Warum die Messwerte die charakteristische Rautenform einnehmen, erklärt ein neues Modell der Bochumer Physiker. Quelle: Physical Review Letters © American Physical Society

Sie bezogen erstmals die Effekte von Zusammenstößen der Sonnenwindteilchen in ihr Modell mit ein. Es erklärt experimentelle Daten wesentlich besser als vorangegangene Berechnungen und lässt sich auch auf kosmische Plasmen außerhalb des Sonnensystems übertragen. Über ihre Ergebnisse berichten die Wissenschaftler in Physical Review Letters.

Temperaturen und Drücke im kosmischen Plasma

Der Sonnenwind besteht aus geladenen Teilchen und ist von einem Magnetfeld durchsetzt. Bei der Analyse dieses Plasmas untersuchen Forscher zwei Arten von Drücken: Der magnetische Druck beschreibt die Tendenz der Magnetfeldlinien, sich gegenseitig abzustoßen, der kinetische Druck resultiert aus dem Impuls der Teilchen. Das Verhältnis von kinetischem zu magnetischem Druck wird Plasmabeta genannt und ist ein Maß dafür, ob mehr Energie pro Volumen in Magnetfeldern oder in der Teilchenbewegung gespeichert ist. In vielen kosmischen Quellen liegt das Plasmabeta um den Wert eins, was gleichbedeutend mit Energiegleichverteilung ist. Zudem herrscht in kosmischen Plasmen nahezu Temperaturisotropie, d.h. die Temperatur ist in paralleler und senkrechter Richtung zu den Magnetfeldlinien des Plasmas gleich.

Satellitendaten erklären

Über zehn Jahre lang sammelten die Instrumente des in Erdnähe befindlichen WIND-Satelliten verschiedene Sonnenwinddaten. Trägt man die gemessenen Plasmabeta gegen die Temperaturanisotropie (das Verhältnis von senkrechter zu paralleler Temperatur) auf, fallen die Messpunkte in einen rautenförmigen Bereich um den Wert eins. „Wenn sich die Werte aus der Rautenkonfiguration herausbewegen, ist das Plasma instabil und die Temperaturanisotropie und das Plasmabeta landen schnell wieder in dem stabilen Bereich innerhalb der Raute“, sagt Prof. Schlickeiser. Eine konkrete, detaillierte Erklärung dieser Rautenform fehlte aber bisher, vor allem für niedrige Plasmabeta.

Kollisionen im Sonnenwind

In früheren Modellen ging man davon aus, dass die Sonnenwindteilchen aufgrund der niedrigen Dichte nicht direkt zusammenstoßen, sondern nur über elektromagnetische Felder wechselwirken. „Solche Annahmen sind allerdings für kleine Plasmabeta nicht mehr gerechtfertigt, da dann die Dämpfung aufgrund von Teilchenstößen berücksichtigt werden muss“, so Dipl.-Phys. Michal Michno. Prof. Schlickeisers Gruppe bezog diese zusätzliche Dämpfung in ihr Modell mit ein, wodurch neue Rautengrenzen, also neue Stabilitätsbedingungen, entstanden. Das Bochumer Modell erklärt die gemessenen Sonnenwinddaten wesentlich besser als frühere Theorien.

Allgemeingültige Lösung

Das neue Modell kann auch auf andere dünne kosmische Plasmen übertragen werden, da sie sehr ähnliche Dichten, Temperaturen und Magnetfeldstärken haben wie der Sonnenwind. Auch wenn das Diagramm aus Temperaturanisotropie und Plasmabeta für sie nicht exakt die Rautenform einnimmt, die die Forscher für den Sonnenwind fanden, sagt der neu gefundene Mechanismus voraus, dass die Werte immer nahe um eins liegen. Damit leistet die Theorie auch einen wichtigen Beitrag zur Erklärung der Energiegleichverteilung in kosmischen Plasmen außerhalb des Sonnensystems.

Weitere Informationen

Prof. Dr. Reinhard Schlickeiser, Lehrstuhl für Theoretische Physik IV, Fakultät für Physik und Astronomie der Ruhr-Universität, 44780 Bochum, Tel.: 0234/32-22032

rsch@tp4.ruhr-uni-bochum.de

Michal Michno, Lehrstuhl für Theoretische Physik IV, Fakultät für Physik und Astronomie der Ruhr-Universität, 44780 Bochum, Tel.: 0234/32-22051

mjm@tp4.ruhr-uni-bochum.de

Titelaufnahme

R. Schlickeiser, M. J. Michno, D. Ibscher, M. Lazar, T. Skoda (2011): Modified temperature-anisotropy instability thresholds in the solar wind, Physical Review Letters, 107, 201102, doi: 10.1103/PhysRevLett.107.201102

Redaktion
Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie