Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Sonnensystem-Zwilling einen Schritt näher: erstes Bild des »kalten Jupiters« GJ 504 b

05.08.2013
Eine Astronomengruppe, zu der auch Wissenschaftler des Max-Planck-Instituts für Astronomie gehören, hat eine wichtige Hürde für den Nachweis von fernen Sternensystemen genommen, die unserem eigenen Sonnensystem ähneln

Mit dem Subaru-Teleskop auf Hawaii konnten sie ein Bild des jupiterähnlichen Planeten GJ 405b aufnehmen. Dies ist das erste Bild eines Planeten, der einen sonnenähnlichen Stern (Spektraltyp G) umkreist. GJ 405b ist zudem der bislang kälteste und wahrscheinlich auch der bislang masseärmste Exoplanet, von dem Astronomen bisher Bilder gewinnen konnten.


Abbildung 1: Nahinfrarot-Falschfarbenbild des "zweiten Jupiter" GJ 504b, der den sonnenartigen Stern GJ 504 umkreist, aufgenommen mit dem Subaru-Teleskop. Licht des Sterns, der sich in der Bildmitte befindet, wurde mechanisch und durch systematische Bildbearbeitung unterdrückt. Reste des Lichts sind als Bildstörungen (Ring um den zentralen schwarzen Bereich) zu sehen. Dies ist der bislang kälteste und möglicherweise auch der leichtest Exoplanet, von dem eine solche Aufnahme gelungen ist. Es handelt sich um das erste Bild eines Planeten, der einen sonnenartigen Stern (Spektraltyp G) umkreist. Bild: NAOJ

Bislang wissen die Astronomen um die Existenz von 930 Exoplaneten, also Planeten, die andere Sterne umkreisen als unsere Sonne. Fast alle diese Planeten konnten nur indirekt nachgewiesen werden: entweder durch ihre Gravitationswirkung auf ihre Heimatsterne oder weil sie regelmäßig einen winzigen Bruchteil des Sternenlichts abschatten.

Hypothetischen außerirdischen Astronomen, die mit diesen indirekten Methoden unser eigenes Sonnensystem untersuchen, würden freilich wichtige Eigenschaften unserer kosmischen Nachbarschaft entgehen. Insbesondere dürften sie kaum etwas über die langsamen äußeren Planeten des Sonnensystems herausfinden. Umgekehrt müssen auch irdische Astronomen auf zusätzliche Methoden zurückgreifen, wenn sie um andere Sterne Planetensysteme ähnlich unserem eigenen untersuchen wollen. Eine wichtige Rolle spielen dabei direkte Abbildungen der Planeten solcher Systeme. Abbildungen können zudem Informationen über die Temperatur und einige Atmosphäreneigenschaften der beobachteten Planeten liefern. Ginge man noch einen Schritt weiter und nähme ein direktes Exoplaneten-Spektrum auf (ein Verfahren, das noch in den Kinderschuhen steckt), bekäme man sogar Informationen über die genauere chemische Zusammensetzung der Atmosphäre.

Aus diesem Grunde sind (irdische) Astronomen sehr interessiert daran, direkte Abbildungsverfahren für Exoplaneten weiterzuentwickeln – als wichtiges Werkzeug für den Nachweis und die Untersuchung ferner Planetensysteme, die unserem eigenen Sonnensystem ähneln.

Exoplaneten direkt abzubilden ist allerdings sehr schwierig. Sterne sind ungleich heller als ihre Planeten – typische Helligkeitsverhältnisse liegen bei eins zu einer Milliarde oder mehr. Bei herkömmlichen Beobachtungsmethoden wird ein Planet schlichtweg von seinem Heimatstern überstrahlt. Nur mit ausgefeilten technischen Tricks gelingt es überhaupt, die Planeten auf solchen Abbildungen sichtbar zu machen. Dazu gehören Verfahren, mit denen das Licht des Sterns mechanisch ausgeblendet wird (Koronografie) ebenso wie Analyseverfahren, die mehrere Bilder des untersuchten Planetensystems in gerade der richtigen Weise kombinieren, um Bildstörungen zu unterdrücken.

Nun ist es einer Astronomengruppe um Motohide Tamura (Japanisches Nationalobservatorium [NAOJ] und Universität Tokio), zu der auch mehrere Wissenschaftler des Max-Planck-Instituts für Astronomie gehören, gelungen, der Charakterisierung ferner Planetensysteme, die unserem eigenen ähneln, einen wichtigen Schritt näher zu kommen. Mit dem Subaru-Teleskop auf Hawaii konnten die Forscher Infrarotbilder des jupiterartigen Planeten GJ 504 b gewinnen, er den Stern GJ 504 umkreist, der sich rund 60 Lichtjahre von der Erde entfernt im Sternbild Jungfrau befindet. Der Abstand von GJ 504 b zu seinem Stern beträgt das 44fache des mittleren Abstands der Erde von der Sonne (44 AU). In unserem Sonnensystem entspräche das grob dem Abstand des Neptun von der Sonne.

Dies ist die erste Abbildung eine Exoplaneten, der einen sonnenartigen Stern (Spektraltyp G) umkreist. Bisherige Planetenabbildungen waren nur um leuchtkräftigere Sterne gelungen. Deren Planeten sind im Mittel deutlich massereicher und heißer und damit einfacher aufzunehmen. Abschätzungen der Masse von GJ 504 b beruhen auf Modellierungen des Abkühlungsprozesses des Planeten seit seiner Entstehung. Sie hängen daher vom Alter des Sterns und seiner Planeten ab. Diejenige Abschätzung, die von den meisten der beteiligten Forscher favorisiert wird, ergibt eine Masse von rund 3 Jupitermassen. Damit wäre GJ 504b auch der leichteste der bis jetzt abgebildeten Exoplaneten.

Den Messungen nach ist GJ 504 b auf alle Fälle der kälteste bislang abgebildete Planet. Da kältere Objekte mit Infrarotbildern schwieriger zu erfassen sind als heißere, ist dies ein wichtiger Schritt hin zur Abbildung von kühlen Objekten wie erdähnlichen oder noch kühleren Planeten in einem fernen Planetensystem.

Die Entdeckung gelang im Rahmen des SEEDS-Projekts ("Strategic Explorations of Exoplanets and Disks", zu deutsch etwa "Systematische Erkundungen von Exoplaneten und Scheiben"). Das SEEDS-Beobachtungsprogramm befindet sich derzeit gerade bei der Hälfte seiner Laufzeit. Bereits in dieser ersten Hälfte hat es beeindruckende Bilder zum einen von Exoplaneten geliefert, zum anderen von den Scheiben aus Gas und Staub, die junge Sterne umgeben und aus denen die Planeten dieser Sterne entstehen (vgl. Abbildung 2).

Das Max-Planck-Institut für Astronomie ist eines der Gründungsmitglieder der SEEDS-Durchmusterung. MPIA-Direktor Thomas Henning erklärt: »Wissenschaftler der Abteilung Stern- und Planetenentstehung des MPIA verfügen über einen großen Erfahrungsschatz in punkto Beobachtungsstrategien, Bildbearbeitung der für die Direktabbildungen nötigen Hochkontrastaufnahmen und Modellierung der physikalischen Eigenschaften von Exoplaneten. Daher waren wir ein naheliegender Partner für das SEEDS-Projekt – und wir freuen uns sehr, dass das Projekt in den letzten Jahren so gute Fortschritte gemacht hat!«

Kontakt

Markus Pössel (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
Heidelberg
Telefon: (+49|0) 6221 – 528 261
E-Mail: pr@mpia.de
Thomas Henning (Leiter der SEEDS-Gruppe am MPIA)
Max-Planck-Institut für Astronomie
Heidelberg
Telefon: (+49|0) 6221 – 528 200
E-Mail: walter@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Weitere Informationen:
http://www.mpia.de/Public/menu_q2.php?Aktuelles/PR/2013/PR_2013_07/PR_2013_07_de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

nachricht Eine neue Stufe der magnetischen Sättigung
25.07.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die turbulente Atmosphäre der Venus

25.07.2017 | Physik Astronomie

SEEDs – Intelligente Batterien mit zellinterner Sensorik

25.07.2017 | Energie und Elektrotechnik

Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

25.07.2017 | Physik Astronomie