Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sonnenschutz für den Großen Hund

27.03.2013
Einem internationalen Team von Astronomen unter der Leitung von Forschern am Max-Planck-Institut für Radioastronomie und an der Universität zu Köln ist es gelungen, zwei Titanoxid-Moleküle, TiO and TiO2, in der ausgedehnten Atmosphäre um einen gewaltigen Stern zu identifizieren. Der Stern VY Canis Majoris ist einer der größten Sterne überhaupt und steht am Ende seines Lebenszyklus. Die Entdeckung gelang mit Radioteleskop-Netzwerken in den USA und in Frankreich.
Die Entdeckung der beiden neuen Moleküle gelang im Zuge der Untersuchung eines spektakulären Sterns. VY Canis Majoris oder kurz: `VY CMa´ ist ein veränderlicher Stern im Sternbild Canis Major (Großer Hund). "VY CMa ist kein gewöhnlicher Stern. Es ist einer der größten Sterne, die wir kennen, und er steht nahe am Ende seines Lebens", sagt Tomasz Kamiñski vom Max-Planck-Institut für Radioastronomie (MPIfR). Dieser Stern, mit dem 1000 bis 2000fachen Durchmesser der Sonne, würde fast die Umlaufbahn des Saturn erreichen, könnte man ihn in unserem Sonnensystem platzieren.

Der Stern bläst große Mengen von Material von seiner Oberfläche ab, das einen unregelmäßigen Staubnebel um den Stern bildet. Abbildung 1 zeigt den Reflexionsnebel um VY CMa, der dadurch sichtbar wird, dass darin enthaltene kleine Staubpartikel das Licht des Zentralsterns reflektieren. Die komplexe Struktur eines solchen Nebels hat die Astronomen schon für Jahrzehnte vor ein Rätsel gestellt. Er hat sich als Resultat eines Sternwinds gebildet, aber es ist längst nicht verstanden, worauf die sehr unregelmäßige Struktur zurückgeführt werden kann. Und es ist ebenfalls noch nicht bekannt, welcher physikalische Prozess den Wind antreibt, das heißt wodurch sich das Material von der Sternoberfläche wegbewegt und im umgebenden Raum ausdehnt. "Das Schicksal von VY CMa wird sein, als Supernova zu explodieren, aber wir wissen nicht genau, wann das tatsächlich stattfinden wird", sagt Karl Menten, der Leiter der Forschungsabteilung "Millimeter- und Submillimeter-Astronomie" am MPIfR.

Die Beobachtungen bei verschiedenen Wellenlängen resultieren in einer Vielzahl von Einzelinformationen, charakteristisch für atomares und molekulares Gas. Daraus können die physikalischen Eigenschaften eines kosmischen Objekts abgeleitet werden. Jedes Molekül sendet in einer ganzen Anzahl von charakteristischen Linien Strahlung aus. Sie stellen eine Art Strichcode dar, mit dessen Hilfe sich die Moleküle im Nebel identifizieren lassen. "Die Strahlung in kurzen Radiowellenlängen, den sogenannten Submillimeter-Wellen, ist für die Untersuchung von Molekülen und deren Eigenschaften hervorragend geeignet", sagt Sandra Brünken von der Universität zu Köln. "Die Identifizierung der Moleküle ist leichter möglich und normalerweise kann man auch eine größere Anzahl von Molekülen beobachten als in anderen Bereichen des elektromagnetischen Spektrums."

Das Forschungsteam hat zum ersten Mal TiO and TiO2 in Radiowellenlängen beobachtet. Darüber hinaus ist es das erste Mal überhaupt, dass Titandioxid im Kosmos identifiziert werden konnte. Man kennt dieses Molekül aus dem alltäglichen Leben als Hauptbestandteil des unter Malern als "Titanweiß" bekannten weißen Pigments und ebenso als Zutat von Sonnenschutzmitteln. Es ist sehr wahrscheinlich, dass Titandioxid schon mal als Bestandteil der Nahrung aufgenommen wurde, da es zur Färbung von Lebensmitteln benutzt wird (aufgeführt unter der Codenummer `E171´). Theoretische Überlegungen lassen vermuten, dass Sterne, und zwar speziell Sterne mit sehr geringen Oberflächentemperaturen, in großen Mengen Titanoxide produzieren, die dann mit dem Sternwind nach außen transportiert werden. "Sie neigen dazu, sich in Form von Staubpartikeln zusammenzuballen, die dann im Optischen oder im Infraroten sichtbar werden", sagt Nimesh Patel vom Harvard-Smithsonian Center for Astrophysics. "Und die katalytische Wirkung von Titandioxid beeinflusst vermutlich die chemischen Prozesse, die auf den Staubkörnern stattfinden", ergänzt Holger Müller von der Universität zu Köln. "Das ist sehr wichtig für die Entstehung von größeren Molekülen im Weltraum."

Absorptionsbanden von Titanoxid im sichtbaren Bereich des Spektrums sind seit mehr als 100 Jahren bekannt. Tatsächlich benutzt man diese Linien sogar zur Klassifikation von bestimmten Sterntypen mit niedrigen Oberflächentemperaturen (Spektraltyp M und S). Das Pulsationsverhalten von Mira-Sternen, einer bestimmten Klasse von veränderlichen Sternen, wird auf den Einfluss von TiO zurückgeführt. Mira-Sterne sind veränderliche Überriesensterne in einem sehr späten Entwicklungsstadium, die nach dem Prototypen Mira (`die Wundervolle´) im Sternbild Cetus (Walfisch) benannt werden.

Beobachtungen von TiO and TiO2 zeigen, dass diese beiden Moleküle in der Umgebung von VY CMa in größerer Menge vorhanden sind, und zwar in Bereichen, die auch mehr oder weniger von der Theorie vorhergesagt werden. Es scheint jedoch, dass ein bestimmter Anteil dieser Moleküle keinen Staub bildet, sondern in der Gasphase beobachtet wird. Eine mögliche Erklärung dafür wäre, dass der Staub im umgebenden Nebel zerstört wurde und daher Titanoxid wieder im Gas gefunden wird. Ein solches Szenario wird dadurch unterstützt, dass Bestandteile des Sternwindes um VY CMa miteinander kollidieren.

Die neuen Entdeckungen in Submillimeter-Wellenlängen sind vor allem wichtig, um den Prozess der Staubentstehung zu erforschen. Bei optischen Wellenlängen hat man das Problem, das die von den Molekülen ausgesandte Strahlung an Staubpartikeln in dem umgebenden Nebel gestreut wird und sich daraus ein verschwommenes Bild ergibt. Dieser Effekt kann bei Radiowellen im Submillimeter-Bereich vernachlässigt werden und ermöglicht dadurch wesentlich präzisere Messungen.

Die Entdeckung von TiO and TiO2 im Spektrum von VY CMa erfolgte mit dem Submillimeter-Array (SMA), einem Radiointerferometer auf dem Mauna Kea in Hawaii, USA (Abbildung 2). Da dieses Instrument insgesamt acht Einzelantennen miteinander verbindet, die ein virtuelles Teleskop von 226 Metern Durchmesser ergeben, konnten die Astronomen ihre Messungen mit bislang nicht erreichter Empfindlichkeit und Winkelauflösung durchführen. Eine Bestätigung der neuen Entdeckungen erfolgte später mit dem Plateau-de-Bure-Interferometer (PdBI) des IRAM-Instituts in den französischen Alpen.

Das neue `Atacama Large Millimeter/submillimeter Array´ (ALMA) in Chile ist soeben offiziell eröffnet worden. "ALMA wird die Untersuchung von Titanoxiden und weiteren Molekülen in VY CMa bei sogar noch besserer Auflösung ermöglichen", schließt Tomasz Kamiñski. "Damit lassen unsere Resultate einiges für zukünftige Entdeckungen erwarten."

Kontakt:

Dr. Tomasz Kamiñski,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49(0)228-525-392
E-mail: kaminski@mpifr-bonn.mpg.de

Prof. Dr. Karl M. Menten,
Direktor und Leiter der Forschungsabteilung "Millimeter- und Submillimeter-Astronomie",
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49(0)228-525-297
E-mail: kmenten@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit,
Max-Planck-Institut für Radioastronomie,
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Weitere Informationen:
http://www.mpifr-bonn.mpg.de
http://www3.mpifr-bonn.mpg.de/public/pr/pr-tio-mar2013-dt.html
http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201220290&Itemid=129

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte