Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Sonnen- zu Sternflecken - Astronomen vermessen erstmals Magnetfeld eines Sternflecks

06.12.2012
Forschern am Leibniz-Institut für Astrophysik Potsdam (AIP) ist es gelungen, das Magnetfeld eines dunklen Sternflecks zu bestimmen. Damit konnten sie den lange erwarteten Nachweis erbringen, dass Sternflecken ebenso wie Sonnenflecken Orte besonders hoher Magnetfelddichte sind: das Feld erreicht lokal eine etwa fünfzig- bis hundertfach größere Stärke als auf der restlichen Oberfläche des Sterns.

Der Nachweis wurde möglich durch die am AIP entwickelte neue tomografische Analysesoftware iMap. Die Arbeit des Wissenschaftler-Teams um Thorsten Carroll und Klaus G. Strassmeier wurde diese Woche als Highlight in der Fachzeitschrift Astronomy & Astrophysics publiziert.


Magnetfeld- und Temperaturkarte der Oberfläche des Sternes V410 Tauri. Der Stern ist eine „junge Sonne“ von wenigen Millionen Jahren.

Illustration: AIP


Magnefeldextrapolation von V410 Tauri.

Animation: AIP

Magnetfelder beeinflussen die Strahlungscharakteristik von Sternen durch Polarisation von Licht: die elektromagnetischen Wellen werden in ihrer Schwingungsrichtung beeinflusst, dies wiederum prägt das Spektrum des Sterns. Aus seinem charakteristischen „Fingerabdruck“ im Spektrum kann mittels hochauflösender Spektroskopie im polarisierten Licht auf die Geometrie des lokalen Magnetfeldes an der Sternoberfläche zurückgeschlossen werden.

Da Sternflecken dunkel und damit etwa Tausend bis Zweitausend Grad kühler als ihre Umgebung sind, stellt ihre Beobachtung für die Spektroskopie jedoch eine besondere Herausforderung dar. Klaus G. Strassmeier: „Wenn ein Ort auf der Oberfläche am Stern dunkel ist, kommt von dort kein oder nur wenig Licht im Spektrographen an und die über die ganze Sternscheibe rekonstruierte Magnetfeldverteilung wird verfälscht oder sogar unterdrückt.“

Tomografische Methoden wie sie auch in der Medizin zum Einsatz kommen, ermöglichen eine genaue Vermessung der Oberfläche eines rotierenden Sterns. In der Kombination zahlreicher Momentaufnahmen eines rotierenden Sterns ergibt sich ein hochqualitatives Gesamtbild. Das AIP ist eines der wenigen Institute weltweit, die astronomische tomografische Techniken entwickeln und nutzen.

Die neue Tomografiesoftware iMap ermöglicht es den Forschern, aus den Momentaufnahmen des Lichts simultan die Temperatur- und Magnetfeldverteilungen auf der Oberfläche des Sterns rekonstruieren. Diese gleichzeitige Betrachtung von Temperatur und Feld zeigt Magnetfelder auch für wenig Licht, also selbst für dunkle Sternflecken auf. Die Berechnung ist höchst aufwändig, so Thorsten Carroll: „Um diesen komplexen Prozess rechnerisch überhaupt bewältigen zu können trainieren wir ein künstliches neuronales Netzwerk, das die Rechengeschwindigkeit unserer Simulationen um ein Tausendfaches beschleunigt.“ Dies macht die Software so stark, dass selbst für weit entfernte Sterne, für die das Hintergrundrauschen das eigentliche beobachtbare Signal übersteigt, magnetische Oberflächenkarten von Sternen erstellt werden können.

Bei dem ersten von den Forschern vermessenen Stern handelt es sich um den sonnenähnlichen Stern V410 Tauri, der mit dem Spektropolarimeter Espadons am 3,6-Meter Spiegel des Canada-France-Hawaii Teleskop am Mauna Kea beobachtet wurde. Als nächstes wollen die Astronomen Oberflächen-Magnetfelder von weiteren sonnenähnlichen Sternen bestimmen. Dies ist insbesondere interessant für Sterne mit Planetensystemen, denn das Magnetfeld eines Sterns hat einen entscheidenden Einfluss auf die Entwicklung eines bewohnbaren Planetensystems.

Für die tomographische Erfassung der vielen lichtschwachen Sterne in unserer Galaxie warten die Forscher bereits ungeduldig auf Spektropolarimeter der nächsten Generation wie das in Potsdam entwickelte PEPSI-Instrument, welches ab 2014 am Large Binocular Telescope, dem weltgrößten optischen Teleskop auf dem 3.200 Meter hohen Mt. Graham in Arizona im Einsatz sein und die Anzahl magnetisch vermessbarer Sterne verzehnfachen wird.

Veröffentlichung: T. A. Carroll, K. G. Strassmeier, J. B. Rice, A. Künstler: The magnetic field topology of the weak-lined T Tauri star V410 Tauri. New strategies for Zeeman-Doppler imaging. In: Astronomy & Astrophysics, 584, A95.
Wissenschaftlicher Kontakt: Dr. Thorsten A. Carroll, 0331-7499-539, tcarroll@aip.de

Pressekontakt: Kerstin Mork, 0331-7499-469, presse@aip.de

Das Leibniz-Institut für Astrophysik Potsdam (AIP) beschäftigt sich vorrangig mit kosmischen Magnetfeldern und extragalaktischer Astrophysik. Einen weiteren Schwerpunkt bildet die Entwicklung von Forschungstechnologien in den Bereichen Spektroskopie, robotische Teleskope und E-Science. Seinen Forschungsauftrag führt das AIP dabei im Rahmen zahlreicher nationaler, europäischer und internationaler Kooperationen aus. Das Institut ist Nachfolger der 1700 gegründeten Berliner Sternwarte und des 1874 gegründeten Astrophysikalischen Observatoriums Potsdam, das sich als erstes Institut weltweit ausdrücklich der Astrophysik widmete. Seit 1992 ist das AIP Mitglied der Leibniz-Gemeinschaft.

Kerstin Mork | idw
Weitere Informationen:
http://www.aip.de
http://dx.doi.org/10.1051/0004-6361/201220215

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Physiker bestimmen zum ersten Mal winzige Massendifferenz von Elementarteilchen
27.03.2015 | Bergische Universität Wuppertal

nachricht Magnetische Quantenkristalle
27.03.2015 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Theorie der starken Wechselwirkung bestätigt: Supercomputer bestimmt Neutron-Proton-Massendifferenz

Nur weil das Neutron ein klein wenig schwerer ist als das Proton, haben Atomkerne genau die Eigenschaften, die unsere Welt und letztlich unsere Existenz ermöglichen.

80 Jahre nach der Entdeckung des Neutrons ist es einem Team aus Frankreich, Deutschland und Ungarn unter Führung des Wuppertaler Forschers Zoltán Fodor nun...

Im Focus: Neurochip für die Hirnforschung erfolgreich im Markt

Neues Mess- und Stimulationssystem nimmt die Kommunikation von Nervenzellen in Echtzeit auf und ermöglicht damit lang erhoffte Grundlagenforschung

Für die Enträtselung neurologischer und neurodegenerativer Erkrankungen wie Parkinson, Alzheimer, Depression oder verschiedene Erblindungsformen verspricht ein...

Im Focus: Klassisch oder nicht? Physik der Nanoplasmen

Die Wechselwirkung von intensiven Laserpulsen mit Partikeln auf einer Nanometer-Skala resultiert in der Erzeugung eines expandierenden Nanoplasmas.

In der Vergangenheit wurde die Dynamik eines Nanoplasmas typischerweise durch klassische Phänomene wie die thermische Emission von Elektronen beschrieben. Im...

Im Focus: Klimawandel: Nur auf der Erde, nicht auf dem Mars

Löcher in der Polkappe sind natürlichen Ursprungs

Eine Klimaerwärmung findet auf dem Mars trotz schmelzender Polkappen nicht statt. Zu diesem Ergebnis ist eine Studie der University of Arizona http://www.arizona.edu...

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

THETIS - Branchentreff für Meeresenergien

27.03.2015 | Veranstaltungen

1. HAMMER BIOENERGIETAGE

27.03.2015 | Veranstaltungen

Technologietag bei der SCHOTT AG - Neue Strukturierungstechnologien für Dünngläser

26.03.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Körpergröße war schon immer individuell

27.03.2015 | Studien Analysen

THETIS - Branchentreff für Meeresenergien

27.03.2015 | Veranstaltungsnachrichten

3D-Druck kann die Produktion revolutionieren

27.03.2015 | Maschinenbau