Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

So könnten unkonventionelle Supraleiter funktionieren: neue Phase entdeckt

23.05.2014

Ein Forscherkonsortium aus Deutschland, Großbritannien und den USA hat eine bislang unbekannte Phase in einer speziellen Art von Supraleitern entdeckt, den Arseniden.

Diese Ergebnisse erlauben neue Einblicke in die Wechselwirkungen von Atomen und Elektronen, die für das ungewöhnliche Phänomen der Supraleitung verantwortlich sind. Das Team, dem auch Prof. Dr. Ilya Eremin vom Lehrstuhl für Theoretische Festkörperphysik der Ruhr-Universität angehört, berichtet in „Nature Communications“.

Supraleiter leiten Strom verlustfrei

Supraleiter können Strom verlustfrei leiten – eine einzigartige Eigenschaft. Selbst ein guter Leiter wie Kupfer, das in den meisten Stromkabeln genutzt wird, verliert Energie aufgrund des elektrischen Widerstands. Dennoch werden Supraleiter zurzeit nicht im Alltag genutzt, weil sie sehr tiefe Temperaturen benötigen, um zu funktionieren. Neu entdeckte sogenannte unkonventionelle Supraleiter könnten vielleicht bei höheren Temperaturen arbeiten. Bislang ist aber wenig verstanden, welche Mechanismen der Supraleitung in unkonventionellen Materialien zugrunde liegen.

So funktionieren konventionelle Supraleiter

Elektronen stoßen sich normalerweise aufgrund ihrer negativen Ladungen gegenseitig ab. In konventionellen Supraleitern bilden sie jedoch Paare, indem sie die umliegenden Atome verzerren. Solch ein Elektronenpaar kann leichter durch das Material fließen als einzelne Elektronen. Auch in unkonventionellen Supraleitern treten Elektronenpaare auf; welcher Mechanismus sie zusammenbindet, ist jedoch unbekannt.

Kristallstruktur ändert sich beim Abkühlen

Das Forscherteam untersuchte das Matetrial Eisen-Arsenid, das bei -240 Grad Celsius supraleitend wird. Bei Raumtemperatur, also im nicht supraleitenden Zustand, sind die Atome in einem quadratischen Kristallgitter angeordnet, das vierfach symmetrisch ist. Kühlt man das Material jedoch soweit ab, dass es supraleitend wird, verformt sich das Kristallgitter in eine rechteckige Form, die zweifach symmetrisch ist; man spricht von nematischer Ordnung. Bislang glaubte man, dass sich die nematische Raumstruktur ab einer gewissen Temperatur ausbildet und bei weiterem Abkühlen erhalten bleibt, bis die Supraleitung eintritt. Diese Theorie widerlegte das Team. Kurz bevor Eisen-Arsenid supraleitend wird, nimmt es erneut eine vierfach symmetrische Kristallstruktur ein.

Magnetische Wechselwirkungen könnten der Schlüssel zur Supraleitung sein

Wie die nematische Ordnung zustande kommt, ist seit Langem eine ungelöste Frage. Eine Theorie besagt, dass die zweifach-symmetrische Raumstruktur auf bestimmten Elektronenanordnungen basiert; eine andere Theorie postuliert, dass sie auf Magnetismus beruht. Gemeinsam mit Kollegen der University of Wisconsin hat Ilya Eremin ein Modell erstellt, dass die nematische Ordnung durch magnetische Wechselwirkungen erklärt. Die neuen Daten stützen dieses Modell. Es besagt auch, dass magnetische Wechselwirkungen der Schlüssel zur Supraleitung sind. Die Bildung von Elektronenpaaren in unkonventionellen Supraleitern basiert also möglicherweise auf Magnetismus.

Titelaufnahme

S. Avci et al. (2014): Magnetically driven suppression of nematic order in an iron-based superconductor, Nature Communications, DOI: 10.1038/ncomms4845

Weitere Informationen

Prof. Dr. Ilya Eremin, Institut für Theoretische Physik III der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-26604, E-Mail: Ilya.Eremin@rub.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Orientierungslauf im Mikrokosmos
24.05.2017 | Julius-Maximilians-Universität Würzburg

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Krebs erregende Substanzen aus Benzinmotoren

24.05.2017 | Biowissenschaften Chemie

Wasserqualität von Flüssen: Zusätzliche Reinigungsstufen in Kläranlagen lohnen sich

24.05.2017 | Ökologie Umwelt- Naturschutz

Orientierungslauf im Mikrokosmos

24.05.2017 | Physik Astronomie