Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Skalierungsverhalten exotischer Riesenmoleküle: Universelle Dreierbeziehung

18.07.2014

Heidelberger Physikern gelingt der Nachweis des Skalierungsverhaltens exotischer Riesenmoleküle

Wenn aus einer Zweier- eine Dreierbeziehung wird, verändert sich das Verhalten des Systems – es wird in der Regel komplexer.


Schematische Darstellung von Efimov-Trimeren, die aus zwei Cäsium- und einem Lithium-Atom gebildet werden. Während der Trimer im Grundzustand mikroskopische Ausmaße hat, ist der zweite angeregte Bindungszustand bereits nahezu ein Mikrometer groß. Die Größe der Trimere skaliert nach einem universellen Skalierungsgesetz. Diese Trimerzustände wurden in einem Gemisch von Lithium- und Cäsium-Atomen bei Temperaturen nahe des absoluten Nullpunkts der Temperatur beobachtet.

Abbildungsnachweis: Juris Ulmanis

Während die grundlegenden physikalischen Eigenschaften von zwei wechselwirkenden Teilchen gut verstanden sind, nimmt der mathematische Aufwand bei der Beschreibung von Drei- und Mehrteilchensystemen enorm zu, wobei die Berechnung der Dynamik sogar die Kapazitäten moderner Supercomputer sprengen kann. Das quantenmechanische Dreikörperproblem weist jedoch unter gewissen Bedingungen eine universell skalierende Lösung auf.

Die Vorhersagen eines solchen Modells konnten jetzt Physiker der Universität Heidelberg experimentell bestätigen. Dazu haben die Forscher um Prof. Dr. Matthias Weidemüller molekulare Dreierverbindungen, sogenannte Trimere, unter exotischen Bedingungen untersucht. Die Forschungsergebnisse wurden in der Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Die Heidelberger Forschungsarbeiten basieren auf einer Theorie, die der russische Physiker Vitaly Efimov vor mehr als 40 Jahren formuliert hat. Im Mittelpunkt steht dabei die Suche nach physikalischen Gesetzen, die das Verhalten und die Zustände beliebig vieler Teilchen vorhersagen.

Nach Efimovs Vorhersage lassen sich die Bindungszustände von drei Atomen unter bestimmten Voraussetzungen allgemeingültig beschreiben. Der Wissenschaftler fand unter anderem heraus, dass unendlich viele quantenmechanische Bindungszustände für die „ménage à trois“ existieren, selbst wenn je zwei der Atome keinerlei Bindung eingehen können.

Die sogenannten Efimov-Trimere entstehen aufgrund quantenmechanischer Wechselwirkung mit einer langen Reichweite; sie sind völlig unabhängig von der jeweiligen Natur der drei wechselwirkenden Teilchen.

Nach den Worten von Prof. Weidemüller galt Efimovs Vorhersage lange als „exotisch“, da die Bedingungen, unter denen derartige molekulare Dreierverbindungen existieren, für die Forschung unerreichbar schienen. „Physiker aus unterschiedlichen Forschungsrichtungen haben lange vergeblich versucht, Signaturen von Efimov-Trimeren zu finden“, erläutert der Heidelberger Wissenschaftler.

Erst vor knapp zehn Jahren glückte Forschern in Innsbruck der eindeutige Nachweis dieser Trimere in Systemen, die aus drei identischen Atomen bestehen. Kurz darauf gelang es Physikern um Prof. Dr. Selim Jochim in Heidelberg, den ersten Bindungszustand der Efimov-Trimere genau zu vermessen.

Im Rahmen der Forschungsarbeiten am Zentrum für Quantendynamik und am Physikalischen Institut der Universität Heidelberg wurden nun weitere Eigenschaften der exotischen Efimov-Trimere untersucht. Dazu haben die Forscher ein Gas aus zwei unterschiedlichen Arten von Atomen – Cäsium und Lithium – auf Temperaturen nahe dem absoluten Nullpunkt heruntergekühlt, wobei sie gleichzeitig für eine präzise Kontrolle der Wechselwirkung dieser Lithium-Cäsium-Paare sorgten.

Die Atome wurden in einer Ultrahochvakuumkammer allein durch Laserlicht gekühlt und über mehrere Sekunden durch Lichtkräfte in einem fokussierten Laserstrahl gespeichert. Die Stärke, mit der die Atome aneinander koppeln, kann dann durch Variation des Magnetfelds eingestellt werden. Dazu nutzte das Team um Prof. Weidemüller sogenannte atomare Streuresonanzen.

Der Nachweis der Trimere basiert auf dem Zerfall in ihre drei Bestandteile bei wohldefinierten Kopplungsstärken. Dabei skaliert die Stärke dieser Kopplung nach einem von der jeweiligen Dreierverbindung unabhängigen, rein numerischen Skalenfaktor. „Wir haben den Nachweis geführt, dass die universelle Skalierung auch bei Systemen unterschiedlicher Atome zu finden ist“, sagt Rico Pires, der im Team von Prof. Weidemüller an seiner Dissertation arbeitet.

Den Wissenschaftlern ist es außerdem gelungen, die vorhergesagte Änderung des Skalierungsfaktors für einen Trimer mit unterschiedlichen Teilchen gegenüber einer Dreierverbindung aus identischen Atomen zu bestätigen, wie Doktorand Juris Ulmanis erläutert. Sie haben damit gezeigt, dass sich Efimovs Theorie auf eine Vielzahl von Systemen anwenden lässt. Auf einen weiteren Erfolg der experimentellen Forschungsarbeiten verweist Projektleiterin Dr. Eva Kuhnle: „Erstmals konnten wir nicht nur den Grundzustand, sondern auch die ersten beiden angeregten Trimerzustände nachweisen. Diese Moleküle aus drei Atomen erreichen dann makroskopische Ausdehnungen, vergleichbar mit der Größe eines Bakteriums.“

Wie Prof. Weidemüller betont, sind die Forschungsergebnisse für viele Bereiche der Physik – von der Atom- bis zur Kernphysik – von Bedeutung: „Interessant ist nicht allein der Nachweis des universellen Skalierungsverhaltens, sondern auch die genaue Vermessung kleinster Abweichungen davon. Dadurch gewinnen wir neue Erkenntnisse, wie Efimovs Theorie auf realistische Dreikörpersysteme angewendet werden kann“, erklärt der Heidelberger Wissenschaftler. „Unser Ziel ist ein vertieftes Verständnis von quantenmechanischen Vielteilchensystemen, einem der wichtigsten, aber auch schwierigsten Gebiete der modernen Physik.“

Originalpublikation:
R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E. D. Kuhnle and M. Weidemüller: Observation of Efimov Resonances in a Mixture with Extreme Mass Imbalance. Phys. Rev. Lett. 112, 250404 (published 25 June 2014), doi: 10.1103/PhysRevLett.112.250404

Informationen im Internet:
http://www.physi.uni-heidelberg.de/Forschung/QD

Kontakt:
Prof. Dr. Matthias Weidemüller
Physikalisches Institut
Telefon (06221) 54-19471
weidemueller@uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie