Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wo sitzt die Nichtlinearität?

18.04.2011
Stuttgarter Physiker auf dem Weg zur Entschlüsselung plasmonischer Nanostrukturen

Forschern an der Universität Stuttgart in Zusammenarbeit mit dem Max-Planck-Institut für Festkörperforschung und der Universität Jena ist es nun in einem eleganten Experiment gelungen, dem Ursprung des nichtlinearen Signals in einer metallischen Nanostruktur auf die Schliche zu kommen. Dies berichtet die Fachzeitschrift „Physical Review Letters“ in ihrer neuesten Ausgabe vom April 2011 *).


In der Nanostruktur wird aus den Laserpulsen (rot) Licht bei der dritten Harmonischen (blau) erzeugt. Doch wo genau entsteht es? Universität Stuttgart

Metallische Nanostrukturen haben in den letzten Jahren in der Optik enorm an Bedeutung gewonnen. Da die Strukturgrößen unterhalb der Wellenlänge von sichtbarem Licht liegen, lassen sich durch gezielte Nanostrukturierung Materialien mit nahezu beliebigen optische Eigenschaften erzeugen, die in der Natur so nicht vorkommen.

Neben den linearen optischen Eigenschaften, die bei geringen Lichtintensitäten auftreten, werden auch die nichtlinearen optischen Eigenschaften, durch die neue Lichtfrequenzen erzeugt werden, immer intensiver untersucht. Ein besonderes Augenmerk liegt hier auf der Erzeugung der zweiten oder der dritten Harmonischen, wodurch beispielsweise aus rotem Licht grünes oder blaues Licht generiert werden kann. Bisher sind die experimentellen Ergebnisse sehr vielversprechend, da sie eine extrem hohe Konversionseffizienz aufweisen. So erhofft man sich, maßgeschneiderte Nanostrukturen für eine gewünschte Frequenzkonversion in zukünftigen Anwendungen der nichtlinearen Optik einsetzen zu können.

Leider ist der mikroskopische Ursprung dieser nichtlinearen optischen Effekte bisher weitestgehend unverstanden. Die Tatsache, dass die Strukturen für gewöhnlich auf einem dielektrischen Substrat aufgebracht sind, verkompliziert die Untersuchungen zusätzlich. Sogenannte plasmonische Resonanzen in den metallischen Nanostrukturen führen zu einer Verstärkung des elektrischen Feldes in der Nähe der Struktur, sodass Beträge des Substrates zum nichtlinearen Prozess nicht vernachlässigt werden dürfen.

In den Experimenten wurde ein Gitter, bestehend aus Gold-Nanodrähten, in einen dielektrischen Schichtwellenleiter eingebettet (siehe Abb. 1). Dieses Hybridsystem ist durch markante Merkmale im linearen optischen Spektrum ausgezeichnet. Die Forscher benutzten für die optische Anregung ultrakurze Laserpulse, deren Zentralfrequenz variiert werden konnte. Für jede Zentralfrequenz detektierten sie die Intensität des Lichtes bei der dritten Harmonischen und erhielten so ein entsprechendes nichtlineares Spektrum. Durch Variation des Wellenleitermaterials wurden extrem unterschiedliche Formen des nichtlinearen Spektrums beobachtet, die teilweise denen der linearen Spektren ähnelten, teilweise aber genau entgegengesetzt waren.

Zum Verständnis der Beobachtungen halfen numerische Simulationen, in denen die elektrische Feldverteilung im Hybridsystem berechnet wurde. Hier zeigte sich eine stark wellenlängenabhängige Konzentration des elektrischen Feldes in den verschiedenen beteiligten Materialien. Aus Vergleiche mit den experimentellen Ergebnissen schlossen die Forscher, dass das den nichtlinearen Prozess dominierende Material eindeutig aus der Form des nichtlinearen Spektrums bestimmt werden kann.

Die Experimente aus Stuttgart könnten wegweisend sein bei der weiteren Untersuchung der nichtlinearen optischen Prozesse in metallischen Nanostrukturen und komplexeren photonischen Systemen.

*) T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen
Towards the origin of the nonlinear response in hybrid plasmonic systems
Phys. Rev. Lett. 106, 133901 (2011)

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics