Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sisyphus-Arbeit für polare Moleküle

15.11.2012
Neue Methode für die Kühlung von polaren Molekülen birgt das Potential, molekulare Gase in der Nähe des absoluten Temperaturnullpunkts zu untersuchen.

Die Untersuchung extrem kalter Moleküle ist für eine Reihe von Fragestellungen der Grundlagenforschung interessant. Sie könnte Auskunft darüber geben, wie chemische Reaktionen im Weltall ablaufen. Ultrakalte molekulare Gase könnten als Quantensimulatoren, einzelne kalte Moleküle als Quantenspeicher eingesetzt werden.


Abb. 1: Illustration des experimentellen Aufbaus.
Graphik: Rosa Glöckner, MPQ


Abb. 2: Darstellung der optoelektrischen Sisyphus-Kühlung
Graphik: Alexander Prehn, MPQ

Doch was bei Atomen schon seit einiger Zeit gelingt – sie auf Temperaturen im Nanokelvin-Bereich abzukühlen – erweist sich bei Molekülen aufgrund ihrer großen Komplexität als ungleich schwieriger. Ein Wissenschaftlerteam der Abteilung Quantendynamik von Prof. Gerhard Rempe am Max-Planck-Institut für Quantenoptik hat nun eine neue Kühlmethode entwickelt – die optoelektrische „Sisyphus-Kühlung“ –, die erstmals das Potential birgt, zu diesen bislang für größere und mehr-atomige Moleküle unerreichten tiefen Temperaturen vorzustoßen (Nature, AOP, 14. November 2012).

Der entscheidende Schritt, Atome auf extrem tiefe Temperaturen zu bringen, war die Entwicklung der Laserkühlung. Dabei werden die Atome mit Laserlicht bestrahlt, dessen Energie ein klein wenig unterhalb der Anregungsenergie für einen ausgewählten elektronischen Übergang liegt. Nur Atome, die den Laserstrahlen direkt entgegenlaufen, sind aufgrund des Dopplereffekts in Resonanz, werden angeregt und dabei in dieser Richtung abgebremst. Dieses Verfahren ist die Voraussetzung für die Anwendung weiterer Kühltechniken, die schließlich den Nanokelvin-Bereich erschließen, in dem atomare Ensembles neuartige Materiephasen bilden können.

Das Prinzip der Laserkühlung kann bei mehr-atomigen Molekülen nicht mehr funktionieren, da diese zu viele Anregungsmöglichkeiten besitzen: Hier gibt es nicht nur die elektronischen Anregungszustände – hinzu kommen Vibrationsanregungen, bei denen die Atome gegeneinander schwingen, und Rotationsanregungen, die Drehungen des Moleküls um eine Achse entsprechen. Doch ein Großteil der Moleküle besitzt dafür eine andere Eigenschaft, die sich zum Kühlen nutzen lässt: aufgrund der unterschiedlichen Elektronenaffinitäten der Atome kommt es innerhalb des Moleküls zu Ladungsverschiebungen. So fühlen sich, wie allgemein bekannt, die Elektronen in Wassermolekülen (H2O) stärker zu dem Sauerstoffatom als zu den Wasserstoffatomen hingezogen. Auf diese Weise bilden sich ein negativer und ein positiver Ladungsschwerpunkt aus. Auch wenn solche polaren Moleküle nach außen hin elektrisch neutral sind, besitzen sie somit ein ausgeprägtes Dipolmoment. Dies hat zur Folge, dass sich ihre Anregungsniveaus in einem statischen elektrischen Feld aufspalten – je nachdem, ob der Dipol parallel oder antiparallel zum elektrischen Feld ausgerichtet ist. Dieser sogenannte Stark-Effekt (benannt nach dem deutschen Physiker Johannes Stark) ist der Schlüssel zum optoelektrischen Sisyphus-Kühlen.

In dem hier beschriebenen Experiment wird die neue Kühltechnik an einem Ensemble aus ca. einer Million polaren CH3F-Molekülen getestet. Die bereits auf rund 400 Millikelvin vorgekühlten Teilchen sind zwischen den beiden Platten eines Kondensators gefangen, dessen Feld im Zentrum sehr gleichmäßig ist, aufgrund einer Mikrostrukturierung der Plattenoberfläche zum Rand hin jedoch stark ansteigt. Infolge der Wechselwirkung der molekularen Dipole mit dem elektrischen Feld zeigen ihre Energie-Niveaus die oben erwähnte Stark-Aufspaltung. Ein Kühlzyklus beginnt damit, Moleküle im Zentrum der Falle durch Infrarotstrahlung auf ein höher gelegenes Niveau anzuregen. Von dort aus gehen sie wieder unter Aussendung von Photonen spontan in den Grundzustand über. Dabei kann sich allerdings die Ausrichtung ihres Dipolmoments relativ zum elektrischen Feld ändern.

„Damit ein Molekül erfolgreich gekühlt werden kann, müssen nun zwei Schritte erfolgen“, erklärt Martin Zeppenfeld, der das Experiment im Rahmen seiner Doktorarbeit konzipiert und mit seinen Kollegen aufgebaut hat. „Zum einen muss es in dem höheren der beiden Stark-Zustände gelandet sein. Zum andern muss es sich anschließend in die Randzone der Falle bewegen, in der das elektrische Feld stark ansteigt.“ Wenn das Molekül diesen ‚Berg‘ hoch läuft, wandelt sich ein großer Teil seiner Bewegungsenergie in potentielle Energie um. Genau an diesem Punkt wird das Dipolmoment des Moleküls mit geeigneten Radiofrequenzfeldern gezielt gedreht, sodass es in den tieferen Stark-Zustand übergeht. Da hier die Wechselwirkung mit dem elektrischen Feld kleiner ist, gewinnt es beim ‚Zurückrollen‘ ins Fallenzentrum weniger Energie als es beim ‚Hochlaufen‘ aufgewendet hat. „Hier liegt die Analogie zur mühevollen Arbeit des antiken Helden Sisyphus“, erläutert Zeppenfeld. „Die Methode nutzt die spontane Photonenemission besonders effizient für die Verringerung der Entropie des Systems. Die eigentliche Abkühlung erfolgt dagegen durch die starke Wechselwirkung der Dipole mit den elektrischen Feldern in der Teilchenfalle.“

Bereits mit einigen Wiederholungen des Zyklus wird das System relativ stark – von 390 Milli-Kelvin auf 29 Milli-Kelvin – abgekühlt. „Diese Technik lässt sich auf viele unterschiedliche Moleküle anwenden, solange diese nicht zu groß sind und ein ausgeprägtes Dipolmoment besitzen“, betont Barbara Englert, die an diesem Experiment als Doktorandin forscht. Potentielle Anwendungen sieht sie in der Entwicklung molekularer Schaltungen, insbesondere in Verbindung mit supraleitenden Materialien. Rosa Glöckner, ebenfalls Doktorandin am Experiment, ist dagegen vor allem von den Möglichkeiten für die Vielteilchenphysik fasziniert. „Unsere Methode hat das Potential, molekulare Gase so stark abzukühlen, dass wir andere Kühltechniken wie das Verdampfungskühlen anschließen können. Damit könnten wir in den für die Bildung eines Bose-Einstein-Kondensats notwendigen Nanokelvin-Bereich vorstoßen.“ Von besonderem Interesse dabei sei es, das Verhalten polarer Moleküle in optischen Gittern zu untersuchen, da sich die Reichweite der Dipol-Wechselwirkung über mehrere Gitterplätze erstreckt.

Bis solche Anwendungen möglich werden, ist noch ein weiter Weg zu bewältigen. „Wir haben aber noch eine Reihe von Möglichkeiten, das aktuelle Experiment zu optimieren, von Verbesserungen an der elektrischen Falle oder am Nachweisverfahren für die Moleküle bis hin zur Verwendung anderer Molekülspezies“, meint Martin Zeppenfeld. „Somit dürften wir schon relativ bald zu deutlich niedrigeren Temperaturen vorstoßen. Schon jetzt aber ermöglicht unsere Technik neuartige Untersuchen an polaren Molekülen – von hochauflösender Spektroskopie bis hin zur Untersuchung von Stößen zwischen gefangenen Molekülen in durchstimmbaren homogenen elektrischen Feldern.“ [Olivia Meyer-Streng]

Originalveröffentlichung:
M. Zeppenfeld, B.G.U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L.D. van Buuren, M. Motsch, and G. Rempe
Sisyphus Cooling of Electrically Trapped Polyatomic Molecules
Nature, AOP, 14. November 2012, DOI:10.1038/nature11595
Kontakt:

Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 -701
Fax: +49 - 89 / 32905 -311
E-Mail: gerhard.rempe@mpq.mpg.de

Dipl. Phys. Martin Zeppenfeld
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 -726
Fax: +49 - 89 / 32905 -311
E-Mail: martin.zeppenfeld@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Glücksfall zeigt, aus welchen Elementen «Chury» besteht
29.07.2015 | Universität Bern

nachricht Japanischer Mega-Laser schießt ersten Lichtimpuls
29.07.2015 | Osaka University

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superschneller Wellenritt im Kristall: Elektronik auf Zeitskala einzelner Lichtschwingungen möglich

Physikern der Universitäten Regensburg und Marburg ist es gelungen, die von einem starken Lichtfeld getriebene Bewegung von Elektronen in einem Halbleiter in extremer Zeitlupe zu beobachten. Dabei konnten sie ein grundlegend neues Quantenphänomen entschlüsseln. Die Ergebnisse der Wissenschaftler sind jetzt in der renommierten Fachzeitschrift „Nature“ veröffentlicht worden (DOI: 10.1038/nature14652).

Die rasante Entwicklung in der Elektronik mit Taktraten bis in den Gigahertz-Bereich hat unser Alltagsleben revolutioniert. Sie stellt jedoch auch Forscher...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Erster Nachweis von Lithium in einem explodierenden Stern

Erstmals konnte das chemische Element Lithium in der ausgestoßenen Materie einer Nova nachgewiesen werden. Beobachtungen von Nova Centauri 2013 mit Teleskopen des La Silla-Observatoriums der ESO und in der Nähe von Santiago de Chile helfen bei der Aufklärung des Rätsels, warum so viele junge Sterne mehr von diesem Element enthalten als erwartet. Diese Entdeckung liefert ein seit langem fehlendes Teil im Puzzle der chemischen Entwicklungsgeschichte unserer Galaxie und ist ein großer Fortschritt für das Verständnis des Mischungsverhältnisses der chemischen Elemente in den Sternen unserer Milchstraße.

Das leichte chemische Element Lithium ist eines der wenigen Elemente, das nach unserer Modellvorstellung auch beim Urknall vor 13,8 Milliarden Jahren...

Im Focus: Durch den Monsun: Flugzeugmission zu Auswirkungen auf Luftqualität und Klimawandel

Mit dem Flugzeug von Zypern auf die Malediven und zurück. Was nach einer Urlaubsreise klingt, ist für 65 Atmosphärenforscher aus ganz Deutschland anspruchsvolle Arbeit: Bei einer Forschungsmission mit dem Flugzeug HALO des Deutschen Zentrums für Luft- und Raumfahrt untersuchen sie derzeit, ob und wie sich die Monsun-Regenfälle in Asien auf die Selbstreinigungskraft der Atmosphäre auswirken. Mit an Bord sind auch zwei Messgeräte des Karlsruher Instituts für Technologie (KIT): Die Karlsruher Klimaforscher messen dabei unter anderem die Konzentrationen von Ozon und Aceton. Das Max-Planck-Institut für Chemie in Mainz koordiniert die Kampagne.

„Die Erdatmosphäre kann sich von Treibhausgasen oder Abgasen aus dem Verkehr selbst reinigen. Dabei wandeln Hydroxyl-Radikale – das sind besonders...

Im Focus: Lichtschalter auf DVD

Da sich die elektronischen Eigenschaften eines optischen Speichermaterials schneller ändern als seine Struktur, könnte es neue Anwendungen finden

In DVDs steckt möglicherweise mehr als bisher angenommen. Das Material aus Germanium, Antimon und Tellur, in dem die Datenträger Information speichern, könnte...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung „Brandschutz im Tank- und Gefahrgutlager“ am 16. November 2015 im Essener Haus der Technik stellt praktische Lösungen vor

30.07.2015 | Veranstaltungen

12. BMBF-Forum für Nachhaltigkeit: Green Economy, Energiewende und die Zukunft der Städte

30.07.2015 | Veranstaltungen

Elektropott: Ruhrgebiets-Hackathon soll Innovation, Kreativität und Teamgeist junger Talente fördern

29.07.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Effiziente Infrarot-Wärme spart Zeit und Energie bei der Herstellung von Autoteppichen

30.07.2015 | Messenachrichten

Deutsche Börse platziert Hybridanleihe im Volumen von EUR 600 Millionen

30.07.2015 | Wirtschaft Finanzen

Tagung „Brandschutz im Tank- und Gefahrgutlager“ am 16. November 2015 im Essener Haus der Technik stellt praktische Lösungen vor

30.07.2015 | Veranstaltungsnachrichten