Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Simulation von Kollisionen von Schwarzen Löchern mit Europas schnellstem Supercomputer

30.11.2011
WissenschaftlerInnen der Gravitationsgruppe der Fakultät für Physik der Universität Wien sind Teil eines internationalen Forschungsteams, das als eines von 24 europäischen Projekten ausgewählt wurde, um im Rahmen der PRACE-Initiative auf Europas schnellsten Supercomputern zu rechnen.

Mit 16,7 Millionen Stunden an Computerzeit – dies entspricht mehr als 1.900 Prozessoren, die für ein Jahr laufen – wird das Team die gewaltigsten Ereignisse im Universum seit dem Urknall untersuchen: Kollisionen von Schwarzen Löchern. Unterstützt werden die PhysikerInnen dabei auch vom Vienna Scientific Cluster, dem schnellsten Rechner Österreichs.


Simulation des Einspiralens
(Illustration: Markus Thierfelder, Universität Jena)

Ziel der Berechnungen ist die direkte Beobachtung der Gravitationswellen, die bei der Verschmelzung Schwarzer Löcher abgestrahlt werden. Gravitationswellen sind Vibrationen der Raumzeit, die – ebenso wie Schwarze Löcher – von Einsteins allgemeiner Relativitätstheorie vorhergesagt werden, aber noch nicht direkt nachgewiesen wurden. "Unser gesamtes Wissen über den Kosmos stammt von der Beobachtung elektromagnetischer Wellen wie Licht, Radiowellen, oder Röntgenstrahlen. Die Beobachtung von Gravitationswellen wird uns ein neues Fenster zum Universum öffnen, das auch über seine 'dunkle Seite' Auskunft geben wird: Schwarze Löcher, die ersten Sekunden des Universums, oder dunkle Materie", so Michael Pürrer, Postdoc der Gravitationsgruppe an der Fakultät für Physik der Universität Wien.

Internationales Detektoren-Netzwerk für Gravitationswellen

Im vergangenen Jahrzehnt wurde ein Netzwerk von Gravitationswellendetektoren errichtet, bestehend aus dem amerikanischen LIGO (Laser Interferometer Gravitational Wave Observatory), dem französisch-italienisch Virgo und dem britisch-deutschen GEO600. Ehrgeiziges Ziel ist die erste direkte Beobachtung der schwer zu fassenden Gravitationswellen. Diese Vibrationen der Raumzeit werden über die Laufwege von Laserstrahlen durch die kilometerlangen Vakuumröhren der Detektoren gemessen. Damit ist es möglich, Längenänderungen aufzulösen, die kleiner sind als der Durchmesser von Protonen oder Neutronen, den Bestandteilen der Atomkerne.

Einsteinsche Gravitationstheorie auf dem Prüfstand

Die genaue Vorhersage der Gravitationswellen durch Computersimulationen wird helfen, das Signal von zwei Schwarzen Löchern aus dem Rauschen der Detektoren herauszufiltern und zu analysieren sowie die Quelle der Signale zu identifizieren. Die Früchte ihrer Arbeit erwarten die ForscherInnen ab 2015, wenn die nächste Generation von Gravitationswellendetektoren ihren Betrieb aufnehmen wird. Die Ergebnisse des laufenden Projekts werden dann zur Beantwortung von wichtigen offenen Fragen beitragen. Beispielsweise ob die Objekte, die in diesen kosmischen Kollisionen erzeugt werden, wirklich Schwarze Löcher sind oder exotischere Objekte wie nackte Singularitäten. "Des Weiteren werden wir imstande sein zu testen, ob die Einsteinsche Gravitationstheorie korrekt ist oder ob sie durch eine weitergehende Theorie von Raum und Zeit zu ersetzen ist – so wie einst die Newtonsche Gravitation durch die Einsteinsche abgelöst wurde", so Sascha Husa, Projekteiter an der Universität in Mallorca und ehemaliger Mitarbeiter in der Wiener Gravitationsgruppe.

PRACE – europäisches Supercomputer-Netzwerk

Die PRACE-Infrastruktur bietet Europäischen WissenschaftlerInnen Zugang zu Supercomputern von Weltrang. PRACE steht für "Partnership for Advanced Computing in Europe" und hat ihren Sitz in Brüssel. Forschungsprojekte werden in einem kompetitiven Peer-Review-Prozess ausgewählt. Im Moment stellt PRACE drei Weltklasse-Supercomputer zur Verfügung, von denen jeder eine Rechenleistung von einem Petaflop erbringen kann, also eine Billiarde arithmetische Operationen pro Sekunde. Die erste Maschine in diesem Netzwerk, die deutsche Jugene, läuft seit 2010. Heuer haben die französische Maschine Curie und das deutsche System Hermit ihren Betrieb aufgenommen. Weitere Computer im PRACE-Netzwerk sind in Deutschland, Spanien und Italien geplant.

Vienna Scientific Cluster unterstützt ForscherInnen in Wien

Für die ForscherInnen der Gravitationsgruppe ist auch die Unterstützung durch den Wiener Supercomputer, den kürzlich ausgebauten Vienna Scientific Cluster (VSC), essentiell. Der von der Universität Wien, der TU Wien und der Universität für Bodenkultur gemeinsam genutzte Rechner bringt es auf 135,6 Teraflops pro Sekunde.

Internationales Team von WissenschafterInnen

Das Forschungsteam besteht aus mehr als 20 PhysikerInnen, die an den Universitäten von Wien, Cardiff, Jena, Mallorca, dem Albert-Einstein-Institut in Potsdam und dem California Institute of Technology arbeiten.

Wissenschaftlicher Kontakt
Mag. Dr. Michael Pürrer
Gravitationsgruppe
Fakultät für Physik
Universität Wien
1090 Wien, Währingerstraße 17/603
T +43-1-4277-721 06
Michael.Puerrer@univie.ac.at
Rückfragehinweis
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie