Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Siliziumchip mit integriertem Laser: Licht aus dem Nanodraht

11.02.2016

Einen Nanolaser, der tausend Mal dünner ist als ein Haar, haben Physiker an der Technischen Universität München (TUM) entwickelt. Dank des ausgetüftelten Verfahrens wachsen die Nanodraht-Laser direkt auf Silizium-Chips. Leistungsfähige photonische Bauelemente lassen sich auf diese Weise kostengünstig herstellen. Damit ist eine Grundvoraussetzung geschaffen für die künftige, schnelle und effiziente Datenverarbeitung mit Licht.

Immer kleiner, immer schneller, immer billiger – seit Beginn des Computerzeitalters verdoppelt sich die Leistung von Prozessoren durchschnittlich alle 18 Monate. Schon vor 50 Jahren prognostizierte Intel-Mitbegründer Gordon E. Moore diese Zunahme der Rechnerleistung. Und das „Mooresche Gesetz“ scheint immer noch zu gelten.


Nanodrähte aus Gallium-Arsenid auf einer Silizium-Oberfläche

Thomas Stettner/Philipp Zimmermann / TUM


Benedikt Mayer und Lisa Janker an der Epitaxieanlage im Walter Schottky Institut der TU München

Uli Benz / TUM

Doch jetzt stößt die Miniaturisierung der Elektronik an physikalische Grenzen. „Schon heute sind Transistoren nur noch einige Nanometer groß. Reduziert man die Abmessungen noch weiter, steigen die Kosten massiv,“ sagt Professor Jonathan Finley, Leiter des Walter-Schottky-Instituts der TUM. „Eine Steigerung der Leistung ist nur realisierbar, wenn man Elektronen durch Photonen, also Lichtteilchen, ersetzt.“

Photonik – der Königsweg zur Miniaturisierung

Die Datenübertragung und -verarbeitung mit Licht hat das Potenzial, die bisherigen Grenzen der Elektronik zu überschreiten. Tatsächlich gibt es bereits erste Photonik-Chips aus Silizium. Die Lichtquellen für die Informationsübertragung müssen jedoch durch komplizierte und aufwändige Fertigungsschritte mit dem Silizium verbunden werden. Weltweit suchen Forscher daher nach alternativen Methoden.

Der Durchbruch ist jetzt Forschern an der TU München gelungen: Dr. Gregor Koblmüller vom Lehrstuhl für Halbleiter Quanten-Nanosysteme hat zusammen mit Jonathan Finley ein Verfahren entwickelt, Nanodrahtlaser direkt auf Silizium-Chips abzuscheiden. Die Technologie wurde bereits zum Patent angemeldet.

Die Verbindung eines III-V Halbleiters mit Silizium erforderte einiges an Tüftelarbeit: „Die beiden Materialien haben unterschiedliche Gitterabstände und unterschiedliche thermische Ausdehnungskoeffizienten. Das führt zu Spannungen “, erläutert Koblmüller. „Dampft man zum Beispiel Galliumarsenid flächig auf Silizium auf, treten Defekte auf“.

Dem TUM-Team gelang es, dieses Problem zu umgehen: Die Nanodrähte stehen aufrecht auf dem Silizium, die Grundfläche beträgt dadurch nur noch einige Quadratnanometer. Defekte können die Wissenschaftler so weitestgehend vermeiden.

Atom für Atom zum Nanodraht

Doch wie wird ein Nanodraht zum Laser? Um kohärentes Licht zu erzeugen, müssen die Photonen am oberen und unteren Ende des Drahts reflektiert werden, wodurch sich der Lichtpuls verstärkt, bis er die gewünschte Leistung erreicht hat.

Um diese Bedingungen zu erfüllen, mussten die Forscher tief in die physikalische Trickkiste greifen: „Die Grenze zwischen Galliumarsenid und Silizium reflektiert nicht genügend Licht. Wir haben daher einen Extra-Spiegel eingebaut – eine 200 Nanometer dünne Siliziumoxid-Schicht, die auf das Silizium aufgedampft wird“, erklärt Benedikt Mayer, Doktorand im Team von Koblmüller und Finley. „In die Spiegelschicht lassen sich dann feine Löcher ätzen, und in denen kann man mittels Epitaxie Atom für Atom, Schicht für Schicht Halbleiter-Nanodrähte züchten.“

Erst wenn die Drähte über die Spiegelfläche herausragen, dürfen sie in die Breite wachsen – solange bis der Halbleiter dick genug ist, damit Photonen in ihm hin und her flitzen und die Aussendung weiter Lichtteilchen anregen können. „Dieser Prozess ist sehr elegant, weil wir die Nanodraht-Laser so direkt auf die Wellenleiter im Silizium Chip positionieren können“, so Koblmüller.

Grundlagenforschung auf dem Weg in die Anwendung

Derzeit produzieren die neuen Galliumarsenid Nanodraht-Laser infrarotes Licht mit einer fest vorgegebenen Wellenlänge und unter gepulster Anregung. „In Zukunft wollen wir die Emissionswellenlänge sowie weitere Laserparameter gezielt verändern, um die Lichtausbreitung unter kontinuierlicher Anregung im Silizium-Chip und die Temperaturstabilität noch besser steuern zu können“, ergänzt Finley.

Erste Erfolge hat das Team soeben veröffentlicht. Und das nächste Ziel steht bereits fest: „Wir wollen eine Schnittstelle zum Strom zu schaffen, damit wir die Nanodrähte elektrisch betreiben können und keine externen Laser mehr benötigen“, erläutert Koblmüller.

„Die Arbeiten sind eine wichtige Voraussetzung für die Entwicklung hochleistungsfähiger optische Komponenten für zukünftige Computer“, resümiert Finley. „Wir konnten zeigen, dass eine Fertigung von Siliziumchips mit integrierten Nanodraht-Lasern möglich ist.“

Die Forschung wurde gefördert mit Mitteln der Deutschen Forschungsgemeinschaft (DFG) durch das TUM Institute for Advanced Study, den Excellenzcluster Nanosystems Initiative Munich (NIM) und die International Graduate School of Science and Engineering (IGSSE) der TUM sowie von IBM über ein Internationales Doktoranden-Programm.

Publikationen:

Monolithically Integrated High-beta Nanowire Lasers on Silicon
B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkötter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmüller, und J. J. Finley
Nano Letters, 2016, 16 (1), pp 152-156 – DOI: 10.1021/acs.nanolett.5b03404
Link: http://pubs.acs.org/doi/full/10.1021/acs.nanolett.5b03404

Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial Gain control
T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley
Applied Physics Letters, 108, 011108 (2016) – DOI: 10.1063/1.4939549
Link: http://dx.doi.org/10.1063/1.4939549

Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires
B. Mayer, L. Janker, D. Rudolph, B. Loitsch, T. Kostenbader, Abstreiter, G. Koblmüller, and J. J. Finley;
Applied Physics Letters 108, Vol. 8, Veröffentlichung 22. Feb. 2016.

Bildmaterial:

https://mediatum.ub.tum.de/?id=1293224

Kontakt:

Prof. Dr. Jonathan J. Finley
Technische Universität München
Walter Schottky Institut
Am Coulombwall 4, 85748 Garching, Germany
Tel.: +49 89 289 11481 – E-Mail: jonathan.finley@wsi.tum.de

Weitere Informationen:

http://www.wsi.tum.de/ Website des Walter Schottky Instituts der TU München
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32934/ Presseinformation auf der TUM-Homepage

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie