Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Siliziumchip mit integriertem Laser: Licht aus dem Nanodraht

11.02.2016

Einen Nanolaser, der tausend Mal dünner ist als ein Haar, haben Physiker an der Technischen Universität München (TUM) entwickelt. Dank des ausgetüftelten Verfahrens wachsen die Nanodraht-Laser direkt auf Silizium-Chips. Leistungsfähige photonische Bauelemente lassen sich auf diese Weise kostengünstig herstellen. Damit ist eine Grundvoraussetzung geschaffen für die künftige, schnelle und effiziente Datenverarbeitung mit Licht.

Immer kleiner, immer schneller, immer billiger – seit Beginn des Computerzeitalters verdoppelt sich die Leistung von Prozessoren durchschnittlich alle 18 Monate. Schon vor 50 Jahren prognostizierte Intel-Mitbegründer Gordon E. Moore diese Zunahme der Rechnerleistung. Und das „Mooresche Gesetz“ scheint immer noch zu gelten.


Nanodrähte aus Gallium-Arsenid auf einer Silizium-Oberfläche

Thomas Stettner/Philipp Zimmermann / TUM


Benedikt Mayer und Lisa Janker an der Epitaxieanlage im Walter Schottky Institut der TU München

Uli Benz / TUM

Doch jetzt stößt die Miniaturisierung der Elektronik an physikalische Grenzen. „Schon heute sind Transistoren nur noch einige Nanometer groß. Reduziert man die Abmessungen noch weiter, steigen die Kosten massiv,“ sagt Professor Jonathan Finley, Leiter des Walter-Schottky-Instituts der TUM. „Eine Steigerung der Leistung ist nur realisierbar, wenn man Elektronen durch Photonen, also Lichtteilchen, ersetzt.“

Photonik – der Königsweg zur Miniaturisierung

Die Datenübertragung und -verarbeitung mit Licht hat das Potenzial, die bisherigen Grenzen der Elektronik zu überschreiten. Tatsächlich gibt es bereits erste Photonik-Chips aus Silizium. Die Lichtquellen für die Informationsübertragung müssen jedoch durch komplizierte und aufwändige Fertigungsschritte mit dem Silizium verbunden werden. Weltweit suchen Forscher daher nach alternativen Methoden.

Der Durchbruch ist jetzt Forschern an der TU München gelungen: Dr. Gregor Koblmüller vom Lehrstuhl für Halbleiter Quanten-Nanosysteme hat zusammen mit Jonathan Finley ein Verfahren entwickelt, Nanodrahtlaser direkt auf Silizium-Chips abzuscheiden. Die Technologie wurde bereits zum Patent angemeldet.

Die Verbindung eines III-V Halbleiters mit Silizium erforderte einiges an Tüftelarbeit: „Die beiden Materialien haben unterschiedliche Gitterabstände und unterschiedliche thermische Ausdehnungskoeffizienten. Das führt zu Spannungen “, erläutert Koblmüller. „Dampft man zum Beispiel Galliumarsenid flächig auf Silizium auf, treten Defekte auf“.

Dem TUM-Team gelang es, dieses Problem zu umgehen: Die Nanodrähte stehen aufrecht auf dem Silizium, die Grundfläche beträgt dadurch nur noch einige Quadratnanometer. Defekte können die Wissenschaftler so weitestgehend vermeiden.

Atom für Atom zum Nanodraht

Doch wie wird ein Nanodraht zum Laser? Um kohärentes Licht zu erzeugen, müssen die Photonen am oberen und unteren Ende des Drahts reflektiert werden, wodurch sich der Lichtpuls verstärkt, bis er die gewünschte Leistung erreicht hat.

Um diese Bedingungen zu erfüllen, mussten die Forscher tief in die physikalische Trickkiste greifen: „Die Grenze zwischen Galliumarsenid und Silizium reflektiert nicht genügend Licht. Wir haben daher einen Extra-Spiegel eingebaut – eine 200 Nanometer dünne Siliziumoxid-Schicht, die auf das Silizium aufgedampft wird“, erklärt Benedikt Mayer, Doktorand im Team von Koblmüller und Finley. „In die Spiegelschicht lassen sich dann feine Löcher ätzen, und in denen kann man mittels Epitaxie Atom für Atom, Schicht für Schicht Halbleiter-Nanodrähte züchten.“

Erst wenn die Drähte über die Spiegelfläche herausragen, dürfen sie in die Breite wachsen – solange bis der Halbleiter dick genug ist, damit Photonen in ihm hin und her flitzen und die Aussendung weiter Lichtteilchen anregen können. „Dieser Prozess ist sehr elegant, weil wir die Nanodraht-Laser so direkt auf die Wellenleiter im Silizium Chip positionieren können“, so Koblmüller.

Grundlagenforschung auf dem Weg in die Anwendung

Derzeit produzieren die neuen Galliumarsenid Nanodraht-Laser infrarotes Licht mit einer fest vorgegebenen Wellenlänge und unter gepulster Anregung. „In Zukunft wollen wir die Emissionswellenlänge sowie weitere Laserparameter gezielt verändern, um die Lichtausbreitung unter kontinuierlicher Anregung im Silizium-Chip und die Temperaturstabilität noch besser steuern zu können“, ergänzt Finley.

Erste Erfolge hat das Team soeben veröffentlicht. Und das nächste Ziel steht bereits fest: „Wir wollen eine Schnittstelle zum Strom zu schaffen, damit wir die Nanodrähte elektrisch betreiben können und keine externen Laser mehr benötigen“, erläutert Koblmüller.

„Die Arbeiten sind eine wichtige Voraussetzung für die Entwicklung hochleistungsfähiger optische Komponenten für zukünftige Computer“, resümiert Finley. „Wir konnten zeigen, dass eine Fertigung von Siliziumchips mit integrierten Nanodraht-Lasern möglich ist.“

Die Forschung wurde gefördert mit Mitteln der Deutschen Forschungsgemeinschaft (DFG) durch das TUM Institute for Advanced Study, den Excellenzcluster Nanosystems Initiative Munich (NIM) und die International Graduate School of Science and Engineering (IGSSE) der TUM sowie von IBM über ein Internationales Doktoranden-Programm.

Publikationen:

Monolithically Integrated High-beta Nanowire Lasers on Silicon
B. Mayer, L. Janker, B. Loitsch, J. Treu, T. Kostenbader, S. Lichtmannecker, T. Reichert, S. Morkötter, M. Kaniber, G. Abstreiter, C. Gies, G. Koblmüller, und J. J. Finley
Nano Letters, 2016, 16 (1), pp 152-156 – DOI: 10.1021/acs.nanolett.5b03404
Link: http://pubs.acs.org/doi/full/10.1021/acs.nanolett.5b03404

Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial Gain control
T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley
Applied Physics Letters, 108, 011108 (2016) – DOI: 10.1063/1.4939549
Link: http://dx.doi.org/10.1063/1.4939549

Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires
B. Mayer, L. Janker, D. Rudolph, B. Loitsch, T. Kostenbader, Abstreiter, G. Koblmüller, and J. J. Finley;
Applied Physics Letters 108, Vol. 8, Veröffentlichung 22. Feb. 2016.

Bildmaterial:

https://mediatum.ub.tum.de/?id=1293224

Kontakt:

Prof. Dr. Jonathan J. Finley
Technische Universität München
Walter Schottky Institut
Am Coulombwall 4, 85748 Garching, Germany
Tel.: +49 89 289 11481 – E-Mail: jonathan.finley@wsi.tum.de

Weitere Informationen:

http://www.wsi.tum.de/ Website des Walter Schottky Instituts der TU München
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32934/ Presseinformation auf der TUM-Homepage

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie