Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Signale aus dem absoluten Nichts

02.10.2015

Konstanzer Physikern gelang die direkte Messung von Vakuum-Fluktuationen

Welche Eigenschaften hat das Vakuum, das absolute Nichts? Physiker gingen bislang davon aus, dass es nicht möglich sei, die Eigenschaften des Nichts – des Grundzustandes des leeren Raumes – direkt zu vermessen.


Veranschaulichung von Vakuum-Fluktuationen

Claudius Riek

Einem Team von Konstanzer Physikern um Prof. Dr. Alfred Leitenstorfer ist nun durch weltweit führende optische Messtechniken genau dies gelungen. Mit Lichtimpulsen, die kürzer sind als eine halbe Lichtschwingung im untersuchten Spektralbereich, konnten sie sogenannte Vakuum-Fluktuationen beobachten. Diese Felder existieren selbst im absoluten Nichts und bei totaler Dunkelheit, also auch dann, wenn die Intensität des Lichts und der Radiowellen komplett verschwindet.

Die Forschungsergebnisse sind von fundamentaler Bedeutung für die Weiterentwicklung der Quantenphysik. Sie werden im renommierten Wissenschaftsjournal Science veröffentlicht; eine Online-Version erscheint bereits am 1. Oktober 2015.

Die Existenz von Vakuum-Fluktuationen war in der Theorie bereits bekannt, sie folgt aus der Heisenbergschen Unschärferelation. Diese besagt, dass elektrische und magnetische Felder niemals gleichzeitig verschwinden können. Daher treten selbst im Grundzustand von Licht und Radiowellen, also in absoluter Dunkelheit, endliche Schwankungen des elektromagnetischen Feldes auf.

Ein unmittelbarer experimenteller Nachweis dieses grundlegenden Phänomens galt bislang aber als ausgeschlossen. Es wurde davon ausgegangen, dass sich Vakuum-Fluktuationen stets nur indirekt in der Natur manifestieren, in einem breiten Spektrum an Konsequenzen. Diese reichen von der spontanen Lichtemission angeregter Atome beispielsweise in einer Leuchtstoffröhre bis zu Einflüssen auf die Struktur des Universums bereits während des Urknalls.

Aufbauten zur Messung elektrischer Felder mit extrem hoher zeitlicher Auflösung und Empfindlichkeit haben es nun ermöglicht, allen Vermutungen zum Trotz Vakuum-Fluktuationen direkt zu detektieren. Weltführende optische Technologien und spezielle Ultrakurzpuls-Lasersysteme höchster Stabilität bilden die Grundlage dieser Studie an der Universität Konstanz.

Diese Technologien wurden vom Konstanzer Forschungsteam selbst entwickelt, das zudem eine genaue Beschreibung der Resultate auf Basis der Quantenfeldtheorie erarbeitet hat. Die zeitliche Auflösung des Experiments liegt im Femtosekundenbereich – dem Millionstel einer Milliardstel Sekunde. Gemessen wurde mit einer nur noch durch die Quantenphysik begrenzten Empfindlichkeit. „Wir können durch diese extreme Präzision erstmalig direkt sehen, dass wir ständig von elektromagnetischen Vakuum-Fluktuationsfeldern umgeben sind“, zieht Alfred Leitenstorfer sein Fazit.

„Das wissenschaftlich Überraschende an unseren Messungen ist, dass wir direkt Zugriff auf den Grundzustand eines Quantensystems gewinnen, ohne diesen zu verändern, beispielsweise durch Verstärkung auf endliche Intensität“, erläutert Leitenstorfer, der von den Forschungsergebnissen selbst überrascht ist: „Es hat uns ein paar Jahre lang schlaflose Nächte beschert – wir mussten alle Möglichkeiten eventueller Störsignale ausschließen“, schmunzelt der Physiker.

„Insgesamt stellt sich heraus, dass unser Zugang auf elementaren Zeitskalen, also kürzer als eine Schwingungsperiode der untersuchen Lichtwellen, den Schlüssel darstellt zum Verständnis der überraschenden Möglichkeiten, die unser Experiment erschließt.“

Das Projekt wird im Rahmen eines „ERC Advanced Grant“ des Europäischen Forschungsrates gefördert.

Originalpublikation:
C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer: „Direct Sampling of Electric-Field Vacuum Fluctuations“
Online-Version ab 1. Oktober 2015 in Science Express unter: http://www.sciencemag.org/content/early/recent

Hinweis an die Redaktionen:
Fotos können im Folgenden heruntergeladen werden:

Experimenteller Aufbau im Labor: http://pi.uni.kn/2015/096-1-Laboraufbau.jpg
Bildtext: Weltführend in der optischen Messtechnik und Lasertechnologie: Mit ultrakurzen Lichtimpulsen tastet das Experiment elektromagnetische Felder ab, die auf Grund der Quantenphysik selbst bei absoluter Dunkelheit noch im leeren Raum vorhanden sind. Die Abbildung zeigt Doktorand Claudius Riek, Erstautor der Studie, beim Justieren seines Aufbaus.

Veranschaulichung von Vakuum-Fluktuationen: http://pi.uni.kn/2015/096-2-Illustration.jpg
Bilderläuterung: Vakuum-Fluktuationen lassen sich als grundlegende Schwankungen des Lichtfeldes selbst in der totalen Dunkelheit vorstellen, deren positive (rot) und negative (blau) Bereiche zufällig im Raum verteilt sind und sich ständig mit hoher Geschwindigkeit ändern – ähnlich dem weißen Rauschen auf einem Bildschirm ohne Signaleingang. Die Ausschläge werden umso größer, je kleiner die Raumbereiche und Zeiten sind, über die ein Messinstrument mittelt. Daher tastet das Experiment von Riek et al. ein minimales Raum-Zeit-Volumen ab, dessen laterale Dimensionen Delta x und Delta y durch die starke Fokussierung des Abtast-Laserstrahls festgelegt sind. Die räumliche Länge Delta z und zeitliche Dauer Delta t des Femtosekunden-Abtastimpulses (grün) sind über die Lichtgeschwindigkeit miteinander verknüpft und definieren die longitudinale Ausdehnung. Die Schwankungsbandbreite Delta E des elektrischen Vakuum-Feldes folgt dann aus einem relativ einfachen mathematischen Zusammenhang, in den außer dem vierdimensionalen Abtastvolumen Delta x Delta y Delta z Delta t nur fundamentale Naturkonstanten eingehen: Das Planck’sche Wirkungsquantum ħ und die Permittivität des Vakuums Epsilon 0.

Detailansicht des Experiments: http://pi.uni.kn/2015/096-3-Detailansicht.jpg
Bildtext: Detaillierte Ansicht des zentralen Teils im experimentellen Aufbau zur direkten Detektion von Vakuum-Fluktuationen. Links ist der für die Messung verwendete elektro-optische Kristall in einer Halterung zwischen zwei goldbeschichteten Parabolspiegeln zu erkennen, die der Fokussierung und Rekollimation der extrem breitbandigen Lichtfelder dienen. Rechts davon befindet sich ein spezieller Strahlteiler zur Überlagerung der ultrakurzen Abtast-Lichtimpulse mit mittelinfraroten Quantenfeldern. Ringsum angeordnet sind mechanische und optische Präzisionskomponenten für die Justage des Strahlengangs zu sehen. Die hochspezielle Femtosekunden-Lichtquelle sitzt außerhalb des hier abgebildeten Bereichs.

Porträtfoto von Prof. Dr. Alfred Leitenstorfer: http://pi.uni.kn/2015/096-4-Leitenstorfer.jpg
Bildtext: Alfred Leitenstorfer ist Professor für Experimentalphysik an der Universität Konstanz. Sein Lehrstuhl forscht an der Weltspitze in der Ultrakurzzeitphysik und den damit verbundenen optischen Technologien.

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 88-3603
E-Mail: kum@uni-konstanz.de

Prof. Dr. Alfred Leitenstorfer
Universität Konstanz
Fachbereich Physik und Centrum für Angewandte Photonik(CAP)
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 88-3818
E-Mail: Alfred.Leitenstorfer@uni-konstanz.de

Julia Wandt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie

25.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics