Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Signale aus dem absoluten Nichts

02.10.2015

Konstanzer Physikern gelang die direkte Messung von Vakuum-Fluktuationen

Welche Eigenschaften hat das Vakuum, das absolute Nichts? Physiker gingen bislang davon aus, dass es nicht möglich sei, die Eigenschaften des Nichts – des Grundzustandes des leeren Raumes – direkt zu vermessen.


Veranschaulichung von Vakuum-Fluktuationen

Claudius Riek

Einem Team von Konstanzer Physikern um Prof. Dr. Alfred Leitenstorfer ist nun durch weltweit führende optische Messtechniken genau dies gelungen. Mit Lichtimpulsen, die kürzer sind als eine halbe Lichtschwingung im untersuchten Spektralbereich, konnten sie sogenannte Vakuum-Fluktuationen beobachten. Diese Felder existieren selbst im absoluten Nichts und bei totaler Dunkelheit, also auch dann, wenn die Intensität des Lichts und der Radiowellen komplett verschwindet.

Die Forschungsergebnisse sind von fundamentaler Bedeutung für die Weiterentwicklung der Quantenphysik. Sie werden im renommierten Wissenschaftsjournal Science veröffentlicht; eine Online-Version erscheint bereits am 1. Oktober 2015.

Die Existenz von Vakuum-Fluktuationen war in der Theorie bereits bekannt, sie folgt aus der Heisenbergschen Unschärferelation. Diese besagt, dass elektrische und magnetische Felder niemals gleichzeitig verschwinden können. Daher treten selbst im Grundzustand von Licht und Radiowellen, also in absoluter Dunkelheit, endliche Schwankungen des elektromagnetischen Feldes auf.

Ein unmittelbarer experimenteller Nachweis dieses grundlegenden Phänomens galt bislang aber als ausgeschlossen. Es wurde davon ausgegangen, dass sich Vakuum-Fluktuationen stets nur indirekt in der Natur manifestieren, in einem breiten Spektrum an Konsequenzen. Diese reichen von der spontanen Lichtemission angeregter Atome beispielsweise in einer Leuchtstoffröhre bis zu Einflüssen auf die Struktur des Universums bereits während des Urknalls.

Aufbauten zur Messung elektrischer Felder mit extrem hoher zeitlicher Auflösung und Empfindlichkeit haben es nun ermöglicht, allen Vermutungen zum Trotz Vakuum-Fluktuationen direkt zu detektieren. Weltführende optische Technologien und spezielle Ultrakurzpuls-Lasersysteme höchster Stabilität bilden die Grundlage dieser Studie an der Universität Konstanz.

Diese Technologien wurden vom Konstanzer Forschungsteam selbst entwickelt, das zudem eine genaue Beschreibung der Resultate auf Basis der Quantenfeldtheorie erarbeitet hat. Die zeitliche Auflösung des Experiments liegt im Femtosekundenbereich – dem Millionstel einer Milliardstel Sekunde. Gemessen wurde mit einer nur noch durch die Quantenphysik begrenzten Empfindlichkeit. „Wir können durch diese extreme Präzision erstmalig direkt sehen, dass wir ständig von elektromagnetischen Vakuum-Fluktuationsfeldern umgeben sind“, zieht Alfred Leitenstorfer sein Fazit.

„Das wissenschaftlich Überraschende an unseren Messungen ist, dass wir direkt Zugriff auf den Grundzustand eines Quantensystems gewinnen, ohne diesen zu verändern, beispielsweise durch Verstärkung auf endliche Intensität“, erläutert Leitenstorfer, der von den Forschungsergebnissen selbst überrascht ist: „Es hat uns ein paar Jahre lang schlaflose Nächte beschert – wir mussten alle Möglichkeiten eventueller Störsignale ausschließen“, schmunzelt der Physiker.

„Insgesamt stellt sich heraus, dass unser Zugang auf elementaren Zeitskalen, also kürzer als eine Schwingungsperiode der untersuchen Lichtwellen, den Schlüssel darstellt zum Verständnis der überraschenden Möglichkeiten, die unser Experiment erschließt.“

Das Projekt wird im Rahmen eines „ERC Advanced Grant“ des Europäischen Forschungsrates gefördert.

Originalpublikation:
C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer: „Direct Sampling of Electric-Field Vacuum Fluctuations“
Online-Version ab 1. Oktober 2015 in Science Express unter: http://www.sciencemag.org/content/early/recent

Hinweis an die Redaktionen:
Fotos können im Folgenden heruntergeladen werden:

Experimenteller Aufbau im Labor: http://pi.uni.kn/2015/096-1-Laboraufbau.jpg
Bildtext: Weltführend in der optischen Messtechnik und Lasertechnologie: Mit ultrakurzen Lichtimpulsen tastet das Experiment elektromagnetische Felder ab, die auf Grund der Quantenphysik selbst bei absoluter Dunkelheit noch im leeren Raum vorhanden sind. Die Abbildung zeigt Doktorand Claudius Riek, Erstautor der Studie, beim Justieren seines Aufbaus.

Veranschaulichung von Vakuum-Fluktuationen: http://pi.uni.kn/2015/096-2-Illustration.jpg
Bilderläuterung: Vakuum-Fluktuationen lassen sich als grundlegende Schwankungen des Lichtfeldes selbst in der totalen Dunkelheit vorstellen, deren positive (rot) und negative (blau) Bereiche zufällig im Raum verteilt sind und sich ständig mit hoher Geschwindigkeit ändern – ähnlich dem weißen Rauschen auf einem Bildschirm ohne Signaleingang. Die Ausschläge werden umso größer, je kleiner die Raumbereiche und Zeiten sind, über die ein Messinstrument mittelt. Daher tastet das Experiment von Riek et al. ein minimales Raum-Zeit-Volumen ab, dessen laterale Dimensionen Delta x und Delta y durch die starke Fokussierung des Abtast-Laserstrahls festgelegt sind. Die räumliche Länge Delta z und zeitliche Dauer Delta t des Femtosekunden-Abtastimpulses (grün) sind über die Lichtgeschwindigkeit miteinander verknüpft und definieren die longitudinale Ausdehnung. Die Schwankungsbandbreite Delta E des elektrischen Vakuum-Feldes folgt dann aus einem relativ einfachen mathematischen Zusammenhang, in den außer dem vierdimensionalen Abtastvolumen Delta x Delta y Delta z Delta t nur fundamentale Naturkonstanten eingehen: Das Planck’sche Wirkungsquantum ħ und die Permittivität des Vakuums Epsilon 0.

Detailansicht des Experiments: http://pi.uni.kn/2015/096-3-Detailansicht.jpg
Bildtext: Detaillierte Ansicht des zentralen Teils im experimentellen Aufbau zur direkten Detektion von Vakuum-Fluktuationen. Links ist der für die Messung verwendete elektro-optische Kristall in einer Halterung zwischen zwei goldbeschichteten Parabolspiegeln zu erkennen, die der Fokussierung und Rekollimation der extrem breitbandigen Lichtfelder dienen. Rechts davon befindet sich ein spezieller Strahlteiler zur Überlagerung der ultrakurzen Abtast-Lichtimpulse mit mittelinfraroten Quantenfeldern. Ringsum angeordnet sind mechanische und optische Präzisionskomponenten für die Justage des Strahlengangs zu sehen. Die hochspezielle Femtosekunden-Lichtquelle sitzt außerhalb des hier abgebildeten Bereichs.

Porträtfoto von Prof. Dr. Alfred Leitenstorfer: http://pi.uni.kn/2015/096-4-Leitenstorfer.jpg
Bildtext: Alfred Leitenstorfer ist Professor für Experimentalphysik an der Universität Konstanz. Sein Lehrstuhl forscht an der Weltspitze in der Ultrakurzzeitphysik und den damit verbundenen optischen Technologien.

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 88-3603
E-Mail: kum@uni-konstanz.de

Prof. Dr. Alfred Leitenstorfer
Universität Konstanz
Fachbereich Physik und Centrum für Angewandte Photonik(CAP)
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 88-3818
E-Mail: Alfred.Leitenstorfer@uni-konstanz.de

Julia Wandt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften