Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie aus sichtbaren Laserstrahlen Röntgenstrahlung wird

19.04.2010
Physiker der Universität Jena weisen den Weg für eine neue Klasse von kohärenten Röntgenlasern / Forschungsergebnisse erscheinen in renommiertem Journal "Nature Physics"

Sei es die Zielankunft eines Formel-1-Rennens oder der Flügelschlag eines Kolibris - um schnelle Bewegungen auf ein Foto zu bannen, braucht es sehr kurze Belichtungszeiten. Das gilt nicht nur für die Fotografie sondern auch für wissenschaftliche Untersuchungsmethoden etwa die zeitaufgelöste Laserspektroskopie.

"Mit ultrakurzen Laserpulsen lassen sich extrem schnelle Phänomene, etwa Schwingungen innerhalb von Molekülen und Atomen darstellen", weiß Prof. Dr. Christian Spielmann von der Friedrich-Schiller-Universität Jena. "Da es sich um sehr kleine Materiestrukturen handelt, müssen die Laserpulse zudem sehr kurzwellig sein", so der Inhaber des Lehrstuhls für Quantenelektronik.

Für die Untersuchung hochgeladener Ionen beispielsweise, mit denen sich der Physiker der Jenaer Uni gemeinsam mit Kollegen der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt beschäftigt, ist Laserlicht aus dem Bereich der Röntgenstrahlung nötig. "Bisher ließ sich Laserlicht im Bereich der Röntgenstrahlung allerdings nur schwer mit für spektroskopische Untersuchungen ausreichender Intensität erzeugen", so Prof. Spielmann. Außerdem sei das Spektrum verfügbarer Röntgenlaser auf wenige Wellenlängen beschränkt. Der Physiker und sein Team von der Uni Jena haben jetzt gemeinsam mit Kollegen der GSI Darmstadt eine Methode entwickelt, wie sich Röntgenstrahlung soweit verstärken lässt, dass sie in einem kohärenten Strahl - ähnlich einem Laser - emittiert wird. Das renommierte Wissenschaftsjournal "Nature Physics" hat die Forschungsergebnisse soeben auf seiner Website veröffentlicht (http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1638.html), bevor sie auch in einer der nächsten Printausgaben des Magazins erscheinen werden.

Ausgangspunkt für die Erzeugung intensiver Röntgenstrahlung ist Laserlicht aus dem sichtbaren Spektrum. "Dieses fokussieren wir in einem Strahl aus Argon-Gas, wobei sogenannte ,hohe harmonische Strahlung' entsteht und die sichtbare Laserstrahlung in den Röntgenbereich verschoben wird", erläutert Dr. Jozsef Seres, Forscher in Prof. Spielmanns Team, ein bereits länger bekanntes Phänomen. Allerdings galt der Umwandlungsgrad von sichtbarem Laserlicht in Röntgenstrahlung bisher als gering.

In ihren Experimenten haben Prof. Spielmann und seine Kollegen nun den Gasdruck des Argonstrahls sukzessive erhöht und den Umwandlungsgrad des Laserlichts in Röntgenstrahlung gemessen. Wie erwartet, stieg die Intensität der Röntgenstrahlung mit dem wachsenden Gasdruck an. In einzelnen Spektralbereichen haben die Physiker aber ein viel stärkeres Anwachsen beobachtet, als theoretisch zu erwarten war. "Diese Zunahme deutet auf eine sogenannte ,parametrische' Verstärkung hin", so der Jenaer Laserexperte Spielmann.

Um ihre Experimente erklären zu können, haben die Autoren ein theoretisches Modell entwickelt, dass beschreibt, unter welchen Umständen Röntgenstrahlung parametrisch verstärkt werden kann: Ein Laser wird in einen Gasstrahl fokussiert und erzeugt zum einen die "hohe harmonische" Strahlung. "Gleichzeitig präpariert der Laserstrahl aber auch die Gasatome in einer Weise, dass sie in der Lage sind, einfallendes Licht zu verstärken, ähnlich wie in einem Laser", so Seres. Damit sei es möglich, intensives Röntgenlicht in einem weiten Spektralbereich zu erzeugen. Mit ihrer nun veröffentlichten Methode, so die Jenaer Physiker, wird es in Zukunft möglich sein, eine neue Klasse von Röntgenquellen zu entwickeln, die energetische Röntgenpulse in einem weiten Spektralbereich und in einem kohärenten Strahl emittieren.

Originalpublikation:
Seres J., Seres E., Hochhaus D., Ecker B., Zimmer D., Begnoud V., Kuehl T., Spielmann C.: Laser-driven amplification of soft X-rays by parametric stimulated emission in neutral gases. Nature Physics, Published online: 18 April 2010, doi:10.1038/nphys1638
Kontakt:
Prof. Dr. Christian Spielmann
Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität Jena
Max-Wien-Platz 1
07743 Jena
Tel.: 03641 / 947230
E-Mail: christian.spielmann[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1638.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie