Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Seltenheit eines Teilchenzerfalls vermessen: Fünfhunderttausend Mal unwahrscheinlicher als ein Lottogewinn

09.03.2016

Die moderne Physik hat eine grosse Zahl theoretischer Ansätze entwickelt, mit denen sich die Welt der Elementarteilchen beschreiben liesse. Nun müssen Experimente aussortieren, welche Theorien der Realität standhalten. Eines davon ist das sogenannte MEG-Experiment am Paul Scherrer Institut PSI. Dabei beziffern Forschende die Unwahrscheinlichkeit eines bestimmten Myonen-Zerfalls. Ihre neueste Zahl lautet: Höchstens eines von 2,4 Billionen Myonen zerfällt nach dem MEG-Muster. Damit ist ein solcher Zerfall rund fünfhunderttausend Mal unwahrscheinlicher als ein Sechser im Schweizer Lotto.


Angela Papa ist Teilchenphysikerin am PSI und am MEG-Experiment beteiligt. Das Experiment trägt wesentlich zu unserem Wissen um die fundamentalen Strukturen der Materie bei.

Foto: Paul Scherrer Institut/Markus Fischer

Es sind exotische Elementarteilchen, die auch noch sehr kurzlebig sind: Myonen zerfallen praktisch direkt nach ihrer Entstehung in andere, stabilere Teilchen. Sie können dabei jedoch unterschiedliche Zerfallspfade einschlagen, das heisst: Entweder resultiert aus dem Zerfall diese oder aber jene Gruppe von Teilchen. Ein ganz besonderer dieser Zerfallspfade ist zwar noch nie beobachtet worden, ist aber für Physiker von grossem Interesse: Der Zerfall eines Myons in ein Elektron und ein Lichtteilchen. Dieser wird auch kurz MEG-Zerfall genannt, für Myon-Elektron-Gamma, wobei Gamma das Lichtteilchen bezeichnet.

Klar ist bislang, dass ein MEG-Zerfall extrem selten ist. Wie selten genau, das wollen Forschende am Paul Scherrer Institut mit dem MEG-Experiment beziffern. Sie erhoffen sich dabei die Entdeckung einer sogenannten neuen Physik – und damit eine Tür zu bisher ungeklärten Phänomenen im Universum. Aufgrund der neuesten Messungen der Forschenden, die wieder keinen einzigen MEG-Zerfall zutage brachten, lässt sich nun sagen: Die Wahrscheinlichkeit für diesen Zerfall ist kleiner als 1 zu 2,4 Billionen und damit rund fünfhunderttausend Mal unwahrscheinlicher als sechs Richtige im Schweizer Lotto.

Das MEG-Experiment kann Theorien zum Universum überprüfen

Diese experimentell ermittelte Zahl ist ein relevanter Parameter für theoretische Physiker, die mathematische Modelle entwickeln, mit denen sich nichts weniger als unser gesamtes Universum beschreiben lässt. Manche dieser Theorien – darunter das derzeit gebräuchliche Standard-Modell der Teilchenphysik – besagen, dass der MEG-Zerfall so gut wie nie vorkommt und damit unmöglich zu beobachten ist. Das Standard-Modell ist ein umfassendes Konzept, das sehr vieles von dem erklärt, was die Menschheit bisher beobachten konnte – aber leider nicht ganz alles. Unter anderem verschweigt das Standard-Modell die Existenz der sogenannten Dunklen Materie und der Dunklen Energie: Jener mysteriösen Stoffe, die zusammen rund 95 Prozent des Universums bilden sollen.

Darum suchen Wissenschaftler weltweit nach einer neuen Physik. Diese würde dargestellt durch eine Theorie, die die Vorhersagen des Standard-Modells beinhaltet, jedoch auch darüber hinausgeht – und damit unser Universum umfassender beschreibt. Eine vielversprechende Gruppe von Theorien ist Susy, kurz für Supersymmetrie. Viele der theoretischen Modelle aus der Susy-Familie sagen eine Wahrscheinlichkeit für den MEG-Zerfall voraus, die so hoch liegt, dass sich dieses Ereignis am PSI früher oder später beobachten lassen sollte. Mit jeder noch genaueren Messung, bei der der Zerfall nicht gefunden wird, lässt sich daher eine Reihe alternativer Theorien verwerfen.

Fünf Jahre lange Messung – an der weltweit leistungsstärksten Myonenquelle

Die neu bezifferte Unwahrscheinlichkeit des MEG-Zerfalls erhielten die Forschenden durch die Auswertung von Daten, die sie am PSI zwischen 2009 und 2013 beinahe kontinuierlich sammelten. Nicht nur die lange Messzeit war erforderlich, um das nun vorliegende Ergebnis zu erhalten – auch die Versuchsdurchführung am PSI war entscheidend: Hier befindet sich die weltweit leistungsstärkste Myonenanlage, an der sich pro Sekunde rund 30 Millionen Myonenzerfälle beobachten lassen. Nur dank dieses hohen Durchsatzes konnten die Forschenden in den fünf Jahren ganze 2,4 Billionen Myonen und ihre Zerfälle vermessen. Der entscheidende MEG-Zerfall war nicht dabei – und so kommen sie auf die neue Obergrenze der Wahrscheinlichkeit für diesen Zerfall.

Kein Fund – und doch ein bedeutendes Ergebnis

Obgleich also der MEG-Zerfall nicht gefunden wurde, sehen die beteiligten Forschenden ihr Experiment als Erfolg an. „Dadurch, dass wir den Zerfall bisher nicht gesehen haben, können wir die gedankliche Linie verschieben, hinter der nach einer neuen Physik gesucht werden muss“, erklärt Angela Papa, Teilchenphysikerin am PSI und Koautorin der neuen Studie. „Und sollten wir eines Tages doch einen MEG-Zerfall beobachten, wäre das ein starker Hinweis auf neue Physik.“

Das bedeutet bislang nicht, dass ein gesamter theoretischer Ansatz wie beispielsweise die Supersymmetrie verworfen werden muss, sondern lediglich individuelle Modelle innerhalb solcher Theorie-Familien.

Ihr MEG-Experiment und damit die Suche nach dem Zerfall werden die PSI-Forschenden auch in Zukunft verfeinern und fortsetzen. Ob der Zerfall eines Tages nun beobachtet wird oder nicht – die Messergebnisse werden in jedem Fall wesentlich zu unserem Wissen um die fundamentalen Strukturen der Materie beitragen.

Text: Paul Scherrer Institut/Laura Hennemann


Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.


Kontakt/Ansprechpartner
Dr. Angela Papa, Labor für Teilchenphysik, Paul Scherrer Institut
Telefon: +41 56 310 55 39, E-Mail: angela.papa@psi.ch [Englisch, Italienisch]

Dr. Stefan Ritt, Labor für Teilchenphysik, Paul Scherrer Institut
Telefon: +41 56 310 37 28, E-Mail: stefan.ritt@psi.ch [Deutsch, Englisch]

Weitere Informationen:

http://psi.ch/xX8E - Darstellung der Meldung auf der PSI-Webseite mit weiteren Abbildungen
http://psi.ch/UxpB – Hintergrundtext: Erkenntnis aus dem Nichts
http://psi.ch/UWvM – Hintergrundtext: Ein entscheidender Zerfall
http://psi.ch/6ZDr – Hintergrundtext: Die Vermessung der Gleichzeitigkeit

Laura Hennemann | Paul Scherrer Institut (PSI)

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen