Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sehr scharf und sehr gut: Astronomisches Messinstrument LUCI erfolgreich getestet

26.04.2016

Heidelberger Wissenschaftler maßgeblich an Entwicklung und Bau beteiligt – Beobachtungsbetrieb am größten Einzelteleskop der Welt

Nach zehnjähriger Entwicklungs- und Bauzeit ist ein neues Universalgerät für astronomische Beobachtungen am größten Einzelteleskop der Welt, dem Large Binocular Telescope in den USA, in seiner endgültigen Ausbaustufe zu einem erfolgreichen Testeinsatz gekommen.


Der LUCI-Spektrograph nach seiner Installation am Teleskop. Sein Hauptteil ist in einem großen Kryostaten-Tank hinter den beiden schwarzen Elektronikboxen im Vordergrund verborgen.

Quelle: Landessternwarte Königstuhl


Ein aus mehreren Aufnahmen komponiertes Bild des planetarischen Nebels NGC 6543. Das Bild zeigt einen 30x30 Bogensekunden großen Himmelsausschnitt. Die Aufnahmen wurden am 20. und 21. März 2016 gewonnen. Deutlich zu erkennen sind die leuchtenden Gase, die von dem zentralen Stern abgestoßen wurden.

Quelle: Landessternwarte Königstuhl

Das hochkomplexe Instrument mit der Bezeichnung LUCI erlaubt es, Bilder und Spektren im Infraroten mit herausragender Qualität aufzunehmen. Entwickelt wurde es von Wissenschaftlern des Zentrums für Astronomie der Universität Heidelberg (ZAH) gemeinsam mit Kollegen des Max-Planck-Instituts für Astronomie in Heidelberg und des Max-Planck-Instituts für Extraterrestrische Physik in Garching.

In den kommenden Wochen folgen weitere Kalibrationen des Messsystems. Anschließend wird LUCI im allgemeinen Beobachtungsbetrieb der Forschung zur Verfügung stehen. Die damit gewonnenen Daten sollen Einblicke in die „Kinderstube“ von Sternen bieten oder möglicherweise auch die Beobachtung von Planeten erlauben, die um ferne Sterne kreisen.

Das Large Binocular Telescope (LBT) auf dem rund 3.200 Meter hohen Mount Graham in Arizona umfasst als Hauptelemente zwei Spiegel mit einem Durchmesser von jeweils 8,4 Metern, die auf einer gemeinsamen Montierung sitzen. Das LBT erreicht so das Lichtsammelvermögen eines Zwölf-Meter-Teleskops und ist damit das derzeit größte Einzelteleskop der Welt.

Um sein Potential optimal nutzen zu können, entwickeln Astrophysiker und Ingenieure spezielle Messinstrumente, zu denen auch LUCI gehört; die Abkürzung steht für „Large Binocular Telescope Near-infrared Utility with Camera and Integral Field“.

Das Universalgerät kann sowohl Infrarot-Bilder einer Himmelsregion aufnehmen als auch das Licht einzelner Objekte spektral zerlegen, wie Dr. Walter Seifert erläutert. Der Wissenschaftler von der Landessternwarte Königstuhl, die zum ZAH gehört, hat an der Entwicklung von LUCI von Beginn an maßgeblich mitgewirkt.

Die Forscher sind davon ausgegangen, dass das LBT weitaus schärfere Bilder liefern müsste als das Weltraumteleskop Hubble. Das war lange Zeit jedoch nicht der Fall, denn durch Turbulenzen in der Erdatmosphäre, die auch für das Funkeln der Sterne verantwortlich sind, werden die Bilder von Sternen und Galaxien erheblich „verschmiert“.

Eine neue Technologie mit einem Sekundärspiegel – als Adaptive Optik bezeichnet – ermöglicht es jedoch, diesen Effekt am Large Binocular Telescope weitgehend auszugleichen. Bereits vor fünf Jahren lieferte das LBT erste superscharfe Aufnahmen mit einer Testkamera. Neu ist nun, dass diese Qualität auch mit der komplexen Messmaschine LUCI erreicht wird, obwohl das Licht der Objekte erst zahlreiche Linsen und Spiegel passieren muss, ehe der Detektor das Signal aus dem Kosmos registriert.

Die gesamte Optik befindet sich dabei in einem sogenannten Kryostaten, der die Komponenten von LUCI auf minus 200 Grad Celsius kühlt. „Dies ist notwendig, um störende infrarote Wärmestrahlung der verschiedenen Bauteile zu vermeiden, die das extrem schwache Infrarotlicht der untersuchten astronomischen Objekte sonst überstrahlen würde“, erläutert Prof. Dr. Jochen Heidt von der Landessternwarte Königstuhl.

Der Heidelberger Astronom hat die jüngsten Testbeobachtungen durchgeführt, die nach seinen Worten „fantastische Ergebnisse“ geliefert haben. Danach sind die optischen Komponenten perfekt konzipiert und eingestellt. „Sie liefern im Infrarot-Bereich definitiv bessere Ergebnisse als Hubble“, unterstreicht Prof. Heidt. LUCI besteht aus zwei speziellen Kameras, die für infrarote Direktaufnahmen des Himmels und der Spektroskopie astronomischer Objekte eingesetzt werden.

Eine dritte Kamera wurde für die Aufnahme von besonders scharfen Bildern konzipiert und kommt in Kombination mit dem adaptiven Teleskop-Sekundärspiegel des LBT nun erstmals zum Einsatz. Sie nutzt die volle optische Auflösung des Teleskops. Eine herausragende Besonderheit von LUCI sind nach Angaben von Prof. Heidt die zehn festen und bis zu 23 austauschbaren Masken, die für die Langspalt- und Multi-Objekt-Spektroskopie eingesetzt werden.

Diese am Max-Planck-Institut für Extraterrestrische Physik entwickelte Technologie macht es möglich, bis zu zwei Dutzend Objekte gleichzeitig zu beobachten. Dabei können die Masken auch bei einer tiefen Arbeitstemperatur ohne mehrtägige Aufwärm- und Abkühlphase des gesamten LUCI-Instruments ausgetauscht werden.

Nach den abschließenden Kalibrationen des Messsystems wird LUCI unter anderem bei Untersuchungen weit entfernter Galaxien zum Einsatz kommen, deren Licht durch die kosmische Rotverschiebung im infraroten Spektralbereich zu finden ist. LUCI soll auch Einblicke in die Geburtsstätten von Sternen ermöglichen, die von intergalaktischem Staub eingehüllt sind, den nur infrarotes Licht durchdringen kann.

Die Wissenschaftler erhoffen sich außerdem neue Erkenntnisse zur Entstehung von Planeten, die ferne Sterne umkreisen. An der Entwicklung und dem Bau von LUCI haben neben den Experten der Landessternwarte Königstuhl und der beiden Max-Planck-Institute weitere Partner mitgewirkt. Dies sind Wissenschaftler der Hochschule Mannheim und des Astronomischen Instituts der Ruhr-Universität Bochum. Das LUCI-Projekt wurde vom Bundesministerium für Bildung und Forschung als Verbundforschungsprojekt finanziell gefördert.

Kontakt:
Dr. Guido Thimm
Zentrum für Astronomie der Universität Heidelberg (ZAH)
Telefon (06221) 54-1805
thimm@zah.uni-heidelberg.de

Universität Heidelberg
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.mpe.mpg.de/ir/lucifer
http://www.lbto.org

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Astronomie Binocular Galaxien Hubble LBT Landessternwarte Telescope ZAH

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie