Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel des platinarmen Nanokatalysators geklärt

19.12.2014

Neuartige Nanopartikel-Katalysatoren könnten die Kosten für Brennstoffzellen dramatisch reduzieren. Ein von Berliner und Jülicher Forschern entwickelter Katalysator kommt mit einem Zehntel der üblichen Platinmenge aus. Doch wie die oktaedrische Form der Partikel und die besondere Verteilung der Elemente zustande kommen, war bisher unklar. Mithilfe ultrahochauflösender Elektronenmikroskopie konnten die Wissenschaftler nun erstmals zeigen, dass das kristalline Wachstum in unterschiedlichen Stufen verläuft. Die Erkenntnisse könnten helfen, die bislang noch kurze Lebensdauer zu verbessern. (Science, DOI: 10.1126/science.1261212)

Mit einer Größe von zehn Nanometern sind die Teilchen des hocheffizienten Katalysatormaterials ungefähr zehntausendmal kleiner als der Durchmesser eines menschlichen Haares. Charakteristisch ist ihre Form, die einem Oktaeder – zwei an den Grundflächen aneinandergesetzten Pyramiden – entspricht.


Ultrahochauflösende Elektronenmikroskopie gibt Einblick in die verschiedenen Stufen des Wachstums von neuartigen Katalysatorpartikeln für Brennstoffzellen.

Auf welche Weise sich die Oktaederform während des Wachstums ausbildet und wie sich dabei die Elemente der Platin-Nickel- oder auch Platin-Kobalt-Legierung verteilen, war bislang völlig unbekannt. Diese Informationen sind jedoch entscheidend um Katalysator-Nanopartikel mit optimaler Leistungsfähigkeit und Haltbarkeit herzustellen.

„Aktivität und Stabilität der Partikel hängen entscheidend davon ab, wie die Elemente im Katalysatormaterial verteilt sind. Hierbei kann schon eine einzelne atomare Lage einen großen Unterschied bewirken“, erläutert Dr. Marc Heggen vom Ernst Ruska-Centrum (ER-C) und vom Jülicher Peter Grünberg Institut. Wie die Forscher des Forschungszentrums Jülich, der Technischen Universität Berlin und der Tsinghua Universität in China herausfanden, wachsen die kristallinen Katalysatorteilchen nicht gleichmäßig, sondern in mehreren Stufen.

Zunächst bildet sich, ausgehend von einem kugelförmigen Keim, innerhalb weniger Stunden ein kreuzförmiges Grundgerüst mit sechs Spitzen, das nahezu ausschließlich aus Platinatomen entsteht. Anschließend lagern sich in einem sehr viel langsameren Wachstumsschritt vorwiegend Nickel- oder Kobaltatome in den entstandenen Mulden an. Wenn die Oberflächen des Oktaeders glatt aufgefüllt sind, stoppt das Wachstum. Die Form gilt für diese Art Katalysatoren als ideal, weil die chemischen Reaktionen an den Oberflächen besonders effektiv ablaufen.

Die Ungleichverteilung der Elemente während des Wachstums bleibt im Oktaeder erhalten und hat entscheidenden Einfluss auf sein katalytisches Verhalten. „Dass wir nun genauer verstehen, wie solche binären Partikel bei der Herstellung wachsen, wird dabei helfen, die Effizienz und Stabilität schon bald weiter zu verbessern“, ist sich Heggen sicher.

Um mit atomarer Genauigkeit zu erkennen, wo sich welches Element befindet, nutzten die Forscher eines der weltweit höchstauflösenden Elektronenmikroskope am ER-C, einer Einrichtung der Jülich Aachen Research Alliance. Dabei wird der Elektronenstrahl fein gebündelt durch die Probe geschickt. Durch die Wechselwirkungen mit der Probe verliert er einen Teil seiner Energie, wodurch jedes Element in der Probe wie mit einem Fingerabdruck eine charakteristische Spur hinterlässt. Herkömmliche Elektronenmikroskope können solche chemischen Signaturen nicht mit atomarer Auflösung erkennen.

Originalveröffentlichung:
Element-specific anisotropic growth of shaped platinum alloy nanocrystals
L. Gan, C. Cui, M. Heggen, F. Dionigi, S. Rudi, P. Strasser
Science, will be published online: 19. December 2014; DOI: 10.1126/science.1261212

Bild:
Berliner und Jülicher Forscher konnten mithilfe ultrahochauflösender Elektronenmikroskopie zeigen, dass das kristalline Wachstum von neuartigen Katalysatorpartikeln für Brennstoffzellen in mehreren Stufen verläuft. Zunächst bildet sich ein kugelförmiges Gebilde (links), daraus wächst ein so genannter „Hexapod“ (Mitte), der vorwiegend aus Platinatomen (rot) besteht, und in der letzten Phase des Wachstums lagern sich bevorzugt Nickelatome (grün) in den Hohlräumen zwischen den sechs Armen an und komplettieren die Oktaederform (rechts). Am Ende sind die Nickel- und Platinatome nicht gleichmäßig im Katalysatorpartikel verteilt.
Quelle: Forschungszentrum Jülich/TU Berlin

Ansprechpartner:
Dr. Marc Heggen, Forschungszentrum Jülich, Mikrostrukturforschung (PGI-5), Tel. 02461 61-9479, E-Mail: m.heggen@fz-juelich.de

Prof. Dr. Peter Strasser, Technische Universität Berlin, Institut für Chemie, Tel. 030 314-22261, E-Mail: pstrasser@tu-berlin.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich, Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ein Hauch von Galaxien im Zentrum eines gigantischen Galaxienhaufens
21.08.2017 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik