Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel des platinarmen Nanokatalysators geklärt

19.12.2014

Neuartige Nanopartikel-Katalysatoren könnten die Kosten für Brennstoffzellen dramatisch reduzieren. Ein von Berliner und Jülicher Forschern entwickelter Katalysator kommt mit einem Zehntel der üblichen Platinmenge aus. Doch wie die oktaedrische Form der Partikel und die besondere Verteilung der Elemente zustande kommen, war bisher unklar. Mithilfe ultrahochauflösender Elektronenmikroskopie konnten die Wissenschaftler nun erstmals zeigen, dass das kristalline Wachstum in unterschiedlichen Stufen verläuft. Die Erkenntnisse könnten helfen, die bislang noch kurze Lebensdauer zu verbessern. (Science, DOI: 10.1126/science.1261212)

Mit einer Größe von zehn Nanometern sind die Teilchen des hocheffizienten Katalysatormaterials ungefähr zehntausendmal kleiner als der Durchmesser eines menschlichen Haares. Charakteristisch ist ihre Form, die einem Oktaeder – zwei an den Grundflächen aneinandergesetzten Pyramiden – entspricht.


Ultrahochauflösende Elektronenmikroskopie gibt Einblick in die verschiedenen Stufen des Wachstums von neuartigen Katalysatorpartikeln für Brennstoffzellen.

Auf welche Weise sich die Oktaederform während des Wachstums ausbildet und wie sich dabei die Elemente der Platin-Nickel- oder auch Platin-Kobalt-Legierung verteilen, war bislang völlig unbekannt. Diese Informationen sind jedoch entscheidend um Katalysator-Nanopartikel mit optimaler Leistungsfähigkeit und Haltbarkeit herzustellen.

„Aktivität und Stabilität der Partikel hängen entscheidend davon ab, wie die Elemente im Katalysatormaterial verteilt sind. Hierbei kann schon eine einzelne atomare Lage einen großen Unterschied bewirken“, erläutert Dr. Marc Heggen vom Ernst Ruska-Centrum (ER-C) und vom Jülicher Peter Grünberg Institut. Wie die Forscher des Forschungszentrums Jülich, der Technischen Universität Berlin und der Tsinghua Universität in China herausfanden, wachsen die kristallinen Katalysatorteilchen nicht gleichmäßig, sondern in mehreren Stufen.

Zunächst bildet sich, ausgehend von einem kugelförmigen Keim, innerhalb weniger Stunden ein kreuzförmiges Grundgerüst mit sechs Spitzen, das nahezu ausschließlich aus Platinatomen entsteht. Anschließend lagern sich in einem sehr viel langsameren Wachstumsschritt vorwiegend Nickel- oder Kobaltatome in den entstandenen Mulden an. Wenn die Oberflächen des Oktaeders glatt aufgefüllt sind, stoppt das Wachstum. Die Form gilt für diese Art Katalysatoren als ideal, weil die chemischen Reaktionen an den Oberflächen besonders effektiv ablaufen.

Die Ungleichverteilung der Elemente während des Wachstums bleibt im Oktaeder erhalten und hat entscheidenden Einfluss auf sein katalytisches Verhalten. „Dass wir nun genauer verstehen, wie solche binären Partikel bei der Herstellung wachsen, wird dabei helfen, die Effizienz und Stabilität schon bald weiter zu verbessern“, ist sich Heggen sicher.

Um mit atomarer Genauigkeit zu erkennen, wo sich welches Element befindet, nutzten die Forscher eines der weltweit höchstauflösenden Elektronenmikroskope am ER-C, einer Einrichtung der Jülich Aachen Research Alliance. Dabei wird der Elektronenstrahl fein gebündelt durch die Probe geschickt. Durch die Wechselwirkungen mit der Probe verliert er einen Teil seiner Energie, wodurch jedes Element in der Probe wie mit einem Fingerabdruck eine charakteristische Spur hinterlässt. Herkömmliche Elektronenmikroskope können solche chemischen Signaturen nicht mit atomarer Auflösung erkennen.

Originalveröffentlichung:
Element-specific anisotropic growth of shaped platinum alloy nanocrystals
L. Gan, C. Cui, M. Heggen, F. Dionigi, S. Rudi, P. Strasser
Science, will be published online: 19. December 2014; DOI: 10.1126/science.1261212

Bild:
Berliner und Jülicher Forscher konnten mithilfe ultrahochauflösender Elektronenmikroskopie zeigen, dass das kristalline Wachstum von neuartigen Katalysatorpartikeln für Brennstoffzellen in mehreren Stufen verläuft. Zunächst bildet sich ein kugelförmiges Gebilde (links), daraus wächst ein so genannter „Hexapod“ (Mitte), der vorwiegend aus Platinatomen (rot) besteht, und in der letzten Phase des Wachstums lagern sich bevorzugt Nickelatome (grün) in den Hohlräumen zwischen den sechs Armen an und komplettieren die Oktaederform (rechts). Am Ende sind die Nickel- und Platinatome nicht gleichmäßig im Katalysatorpartikel verteilt.
Quelle: Forschungszentrum Jülich/TU Berlin

Ansprechpartner:
Dr. Marc Heggen, Forschungszentrum Jülich, Mikrostrukturforschung (PGI-5), Tel. 02461 61-9479, E-Mail: m.heggen@fz-juelich.de

Prof. Dr. Peter Strasser, Technische Universität Berlin, Institut für Chemie, Tel. 030 314-22261, E-Mail: pstrasser@tu-berlin.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich, Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie