Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel des platinarmen Nanokatalysators geklärt

19.12.2014

Neuartige Nanopartikel-Katalysatoren könnten die Kosten für Brennstoffzellen dramatisch reduzieren. Ein von Berliner und Jülicher Forschern entwickelter Katalysator kommt mit einem Zehntel der üblichen Platinmenge aus. Doch wie die oktaedrische Form der Partikel und die besondere Verteilung der Elemente zustande kommen, war bisher unklar. Mithilfe ultrahochauflösender Elektronenmikroskopie konnten die Wissenschaftler nun erstmals zeigen, dass das kristalline Wachstum in unterschiedlichen Stufen verläuft. Die Erkenntnisse könnten helfen, die bislang noch kurze Lebensdauer zu verbessern. (Science, DOI: 10.1126/science.1261212)

Mit einer Größe von zehn Nanometern sind die Teilchen des hocheffizienten Katalysatormaterials ungefähr zehntausendmal kleiner als der Durchmesser eines menschlichen Haares. Charakteristisch ist ihre Form, die einem Oktaeder – zwei an den Grundflächen aneinandergesetzten Pyramiden – entspricht.


Ultrahochauflösende Elektronenmikroskopie gibt Einblick in die verschiedenen Stufen des Wachstums von neuartigen Katalysatorpartikeln für Brennstoffzellen.

Auf welche Weise sich die Oktaederform während des Wachstums ausbildet und wie sich dabei die Elemente der Platin-Nickel- oder auch Platin-Kobalt-Legierung verteilen, war bislang völlig unbekannt. Diese Informationen sind jedoch entscheidend um Katalysator-Nanopartikel mit optimaler Leistungsfähigkeit und Haltbarkeit herzustellen.

„Aktivität und Stabilität der Partikel hängen entscheidend davon ab, wie die Elemente im Katalysatormaterial verteilt sind. Hierbei kann schon eine einzelne atomare Lage einen großen Unterschied bewirken“, erläutert Dr. Marc Heggen vom Ernst Ruska-Centrum (ER-C) und vom Jülicher Peter Grünberg Institut. Wie die Forscher des Forschungszentrums Jülich, der Technischen Universität Berlin und der Tsinghua Universität in China herausfanden, wachsen die kristallinen Katalysatorteilchen nicht gleichmäßig, sondern in mehreren Stufen.

Zunächst bildet sich, ausgehend von einem kugelförmigen Keim, innerhalb weniger Stunden ein kreuzförmiges Grundgerüst mit sechs Spitzen, das nahezu ausschließlich aus Platinatomen entsteht. Anschließend lagern sich in einem sehr viel langsameren Wachstumsschritt vorwiegend Nickel- oder Kobaltatome in den entstandenen Mulden an. Wenn die Oberflächen des Oktaeders glatt aufgefüllt sind, stoppt das Wachstum. Die Form gilt für diese Art Katalysatoren als ideal, weil die chemischen Reaktionen an den Oberflächen besonders effektiv ablaufen.

Die Ungleichverteilung der Elemente während des Wachstums bleibt im Oktaeder erhalten und hat entscheidenden Einfluss auf sein katalytisches Verhalten. „Dass wir nun genauer verstehen, wie solche binären Partikel bei der Herstellung wachsen, wird dabei helfen, die Effizienz und Stabilität schon bald weiter zu verbessern“, ist sich Heggen sicher.

Um mit atomarer Genauigkeit zu erkennen, wo sich welches Element befindet, nutzten die Forscher eines der weltweit höchstauflösenden Elektronenmikroskope am ER-C, einer Einrichtung der Jülich Aachen Research Alliance. Dabei wird der Elektronenstrahl fein gebündelt durch die Probe geschickt. Durch die Wechselwirkungen mit der Probe verliert er einen Teil seiner Energie, wodurch jedes Element in der Probe wie mit einem Fingerabdruck eine charakteristische Spur hinterlässt. Herkömmliche Elektronenmikroskope können solche chemischen Signaturen nicht mit atomarer Auflösung erkennen.

Originalveröffentlichung:
Element-specific anisotropic growth of shaped platinum alloy nanocrystals
L. Gan, C. Cui, M. Heggen, F. Dionigi, S. Rudi, P. Strasser
Science, will be published online: 19. December 2014; DOI: 10.1126/science.1261212

Bild:
Berliner und Jülicher Forscher konnten mithilfe ultrahochauflösender Elektronenmikroskopie zeigen, dass das kristalline Wachstum von neuartigen Katalysatorpartikeln für Brennstoffzellen in mehreren Stufen verläuft. Zunächst bildet sich ein kugelförmiges Gebilde (links), daraus wächst ein so genannter „Hexapod“ (Mitte), der vorwiegend aus Platinatomen (rot) besteht, und in der letzten Phase des Wachstums lagern sich bevorzugt Nickelatome (grün) in den Hohlräumen zwischen den sechs Armen an und komplettieren die Oktaederform (rechts). Am Ende sind die Nickel- und Platinatome nicht gleichmäßig im Katalysatorpartikel verteilt.
Quelle: Forschungszentrum Jülich/TU Berlin

Ansprechpartner:
Dr. Marc Heggen, Forschungszentrum Jülich, Mikrostrukturforschung (PGI-5), Tel. 02461 61-9479, E-Mail: m.heggen@fz-juelich.de

Prof. Dr. Peter Strasser, Technische Universität Berlin, Institut für Chemie, Tel. 030 314-22261, E-Mail: pstrasser@tu-berlin.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich, Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungsnachrichten

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungsnachrichten

CES Innovation Award für kombinierte Blick- und Spracheingabe im Auto

23.01.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics