Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwingende Lichtmoleküle

05.10.2015

Augsburger und Münchner NIM-Forschern gelingt die Kontrolle von Lichtmolekülen mit nanomechanischen Schallwellen und die Konvertierung solcher Wellen in optische Signale

Wissenschaftlern des Instituts für Physik der Universität Augsburg und des Walter Schottky Instituts der Technischen Universität München ist es bei ihren gemeinsamen Forschungen im Rahmen des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM) gelungen, mit nanomechanischen Schallwellen ein „Lichtmolekül“ zu kontrollieren, das von zwei benachbarten nanophotonischen Resonatoren gebildet wird.


Das Nanobeben stellt im Lichtmolekül die Verbindung zwischen den beiden Resonatoren her und einzelne Photonen springen - wie von den roten Pfeilen angedeutet - hin und her.

@ H. Krenner

Das von Prof. Dr. Hubert Krenner am Augsburger Lehrstuhl für Experimentalphysik I (Prof. Dr. Achim Wixforth) geleitete NIM-Forscherteam beschreibt in einem soeben in Nature Communications publizierten Beitrag, dass die Vibration der Schallwellen die beiden Resonatoren, die das photonische Molekül bilden, mit einer bislang nie dagewesenen Geschwindigkeit, verbinden und trennen.

Für ihre Experimente nutzten Krenner und sein Doktorand Stephan Kapfinger in ihrem Augsburger Labor Halbleitermembranen in Nanometerstärke, in die sie unter Reinraumbedingungen eine große Zahl periodisch angeordneter winzigster Löcher bohrten.

Mit solch einer Struktur kann ein sogenannter photonischer Kristall, Licht mit exakt definierter Energie bzw. Farbe also, eingefangen werden, und zwar in einem Nanoresonator, der entsteht, wenn die Regelmäßigkeit der Bohrungen durch den minimalen Defekt dreier fehlender Löcher unterbrochen wird.

Gemeinsam mit der Forschergruppe um Dr. Michael Kaniber und Prof. Dr. Jonathan Finley an der TU München entwarfen und bauten Kapfinger und Krenner ein photonisches Molekül in Form zweier solch aneinandergrenzenden Nanoresonatoren, in denen Photonen, einzelne Lichtquanten also, hin- und herschwingen können. „In unserem Lichtmolekül verhalten sich die Photonen exakt so wie sich die Elektronen verhalten, die in einem Wasserstoffmolekül eine chemische Verbindung verursachen.

Während die beiden Wasserstoffatome, die ein H2-Molekül bilden, von Natur aus absolut identisch sind, sind dies die von uns konstruierten - künstlichen - nanophotonischen „Atome“ in aller Regel nicht. Und diese winzigen, im Nanobereich liegenden Abweichungen künstlich erzeugter photonischer „Atome“ sind der Realisierung photonischer Bauelemente oder gar photonischer Schaltkreise im Wege gestanden“, erläutert Kapfinger.

Die Augsburger Nanowissenschaftler haben dieses Problem nun mit einem eleganten Trick gelöst: Mit einem „Nanoerdbeben“ auf einen Chip erzeugten sie eine extrem kleine Schallwelle, mit der sich die eine der beiden Nanoresonatoren ihres photonischen Moleküls komprimieren und die andere zugleich entsprechend dehnen lässt.

„Auf diese Weise“, so Krenner, „können wir die herstellungsbedingten Minimalabweichungen zwischen beiden ausgleichen und für einen kurzen Moment absolute Identität, wie sie bei den beiden Atomen des Wasserstoff-Moleküls gegeben ist, herstellen, wobei dieser Moment auf dem Wellenzyklus sich exakt definieren lässt und dadurch die absolute Kontrolle über die Verbindung beider Resonatoren ermöglicht.“

„Es war faszinierend zu sehen“, berichtet Kapfinger, „dass die beiden Resonatoren nicht, wie man eigentlich annehmen würde, dasselbe Licht abstrahlen, sondern dass die Farben sich gegenseitig gewissermaßen abstoßen. Der Unterschied zwischen ihnen spiegelt die Intensität der „Bindung“ des photonischen Moleküls wider. Schon viele Forscher haben an der Messung dieser Effekte hart, aber mit bislang wenig Erfolg gearbeitet.“

Krenner ergänzt: „Mit unserem Experiment konnten wir nicht nur zeigen, wie man ein Lichtmolekül mit bislang nicht gekannter Geschwindigkeit messen und kontrollieren kann. Wir konnten darüber hinaus auch zeigen, dass nanomechanische Wellen effizient in optische Signale konvertiert werden können. Das ist quantenmechanische Kontrolle im wahrsten Sinne des Wortes.“

Die Pionierarbeit und langjährige Erfahrung Wixforths und seines Augsburger Lehrstuhls auf dem Gebiet Akustischer Oberflächenwellen (Surface Acoustic Waves / SAW) führt bereits seit vielen Jahren immer wieder zu wegweisenden Ergebnissen und Anwendungen, die sich auf das ganze Spektrum der Nanowissenschaft erstrecken und weltweit Aufmerksamkeit gefunden haben. „SAW - unsere ganz spezielle Methode, auf die wir hier in Augsburg besonders stolz sind - hat jetzt auch im Bereich der Nanophotonik ihr Potential mit einem spektakulären Ergebnis bewiesen“, freut sich der Augsburger Nanowissenschaftler und NIM Principal Investigator.

Denn die photonischen Kristallstrukturen, die jetzt mit seinem SAW-Verfahren entwickelt und untersucht wurden, sind insoweit enorm relevant, als sie sich zu großdimensionierten, integrierten Lichtschaltkreisen erweitern lassen - und zwar auch in der Quantenwelt. Dies rechtfertigt die Erwartung eines möglichen Ausbaus des Systems bis hin zum optischen Quantencomputer. „Ihn“, so Wixforth, „hat unser Schütteln und Rütteln photonischer Kristalle durch exakt dimensionierte Nanobeben ein Stück näher gebracht.“

Die Untersuchungen der Augsburger Physiker und ihrer Kollegen von der TU München werden von der Deutsche Forschungsgemeinschaft (DFG) über deren Emmy Noether Programm (KR 3790/2-1) und über den DFG-Sonderforschungsbereich 631 unterstützt und im Rahmen der Exzellenzinitiative durch den Cluster Nanosystems Initiative Munich (NIM).

Publikation:

Stephan Kapfinger, Thorsten Reichert, Stefan Lichtmannecker, Kai Müller, Jonathan J. Finley, Achim Wixforth, Michael Kaniber and Hubert J. Krenner: Dynamic acousto-optic control of a strongly coupled photonic molecule, Nature Communications 6, 8540 (2015), doi:10.1038/ncomms9540, http://dx.doi.org/10.1038/ncomms9540

Ansprechpartner:

Prof. Hubert Krenner – hubert.krenner@physik.uni-augsburg.de
Prof. Achim Wixforth – achim.wixforth@physik.uni-augsburg.de

Lehrstuhl für Experimentalphysik I
Universität Augsburg
Universitätsstraße 1
86159 Augsburg
Telefon +49(0)821-598-3308
http://www.physik.uni-augsburg.de/de/lehrstuehle/exp1/emmynoether/

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms9540
http://www.physik.uni-augsburg.de/de/lehrstuehle/exp1/emmynoether/

Klaus P. Prem | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Atome Molekül Moleküls Nanobeben Photonen Schallwellen chemische Verbindung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie