Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwereloser Staub: Forscher entdecken überraschende Entmischung geladener Mikropartikel

15.03.2016

Mikropartikel in Plasmen entmischen sich bereits bei allerkleinsten Ladungsunterschieden. Das konnten Physiker der Ernst-Moritz-Arndt-Universität Greifswald und der Christian-Albrechts-Universität zu Kiel (CAU) nun in einem Experiment unter Schwerelosigkeitsbedingungen demonstrieren. Das Verhalten staubhaltiger Plasmen interessiert nicht nur die Grundlagenforscher, sondern ist auch für immer mehr technologische Anwendungen von großer Bedeutung. Die Resultate wurden aktuell im renommierten Fachjournal Physical Review Letters (http://journals.aps.org/prl/) (Phys. Rev. Lett. 116, 115002 – Published 14 March 2016) veröffentlicht.

Aus der Alltagserfahrung wissen wir, dass sich Wasser und Öl nicht vermischen. In ähnlicher Weise tendieren Systeme aus zwei Sorten geladener Partikel dann zur Entmischung, wenn der Ladungsunterschied zwischen beiden Sorten eine bestimmte Größe überschreitet. Die Wissenschaftler wollten die Frage klären, wie solche Entmischungsvorgänge auf mikroskopischer Ebene ablaufen.


Bild 1: Carsten Killer verfolgt die Entmischung der Mikropartikel am Bildschirm während einer Parabel und kontrolliert den Verlauf des Experiments.

Copyright: Tim Bockwoldt

Carsten Killer, Dr. Michael Himpel und Professor André Melzer aus dem Institut für Physik der Universität Greifswald (http://www.physik.uni-greifswald.de/) haben zusammen mit Dr. Tim Bockwoldt, Stefan Schütt und Professor Alexander Piel von der Universität Kiel (Institut für Experimentelle und Angewandte Physik, http://www.ieap.uni-kiel.de/) Experimente auf sogenannten Parabelflügen durchgeführt, bei denen „binäre“ Mischungen aus zwei unterschiedlich großen Partikelsorten untersucht werden. Während der Schwerelosigkeitsphase werden diese „Staubteilchen“ in eine Plasmaumgebung eingebracht, wo sie eine dichte Wolke bilden.

Im Plasma erhalten die beiden Partikelsorten entsprechend ihres Größenunterschieds eine leicht unterschiedliche elektrische Ladung. Bereits Ladungsdifferenzen von weniger als drei Prozent führten zu einer unerwarteten räumlichen Trennung der beiden Sorten innerhalb der Wolke – etwa wie bei Wasser und Öl.

Das Besondere an diesem Experiment ist eine neuartige Methode, die es ermöglicht, den Entmischungsprozess auf der Ebene einzelner Partikel zu beobachten. Da die Mikropartikel mit herkömmlichen Messtechniken nicht zu unterscheiden sind, markierten die Forscher eine Sorte mit Fluoreszenzfarbstoffen, die sich unter Laserbeleuchtung von der unmarkierten Partikelsorte optisch abheben.

Während unter normalen Schwerkraftbedingungen eine Entmischung der zwei Staubsorten aufgrund der unterschiedlichen Gravitationskräfte zu erwarten ist, war die Beobachtung der Trennung unter Schwerelosigkeit überraschend, sagt Carsten Killer: „Wir haben herausgefunden, dass die durch das Plasma hervorgerufenen, elektrostatischen Kräfte für die Entmischung verantwortlich sind.“

Die Entmischung von geladenen Partikeln ist zum Beispiel bei der Herstellung von Metalllegierungen und auch in der Biologie (Mikrofluidik*) relevant, wo mikroskopische Objekte wie Zellen oder Viren für diagnostische Zwecke ver- oder entmischt werden können. „Die hier untersuchten partikelhaltigen Plasmen bilden ein hervorragendes Modellsystem, um die Dynamik geladener Partikel auf mikroskopischer Ebene zu untersuchen. Das könnte industrielle und biotechnologische Prozesse zukünftig ver-bessern“, ordnet Tim Bockwoldt die Forschungsergebnisse ein.

Um den Einfluss des Plasmas ohne störende Schwerkraft zu untersuchen, wurden die Experimente auf Parabelflügen durchgeführt. Dabei vollführt ein Flugzeug ein spezielles Manöver, bei dem die Staubpartikel im Plasma wie auch die Wissenschaftler an Bord für 22 Sekunden schwerelos sind. Hierfür wurde der neue Airbus A310 „Zero-G“ genutzt, der zuvor als Kanzlermaschine „Konrad Adenauer“ im Einsatz war und vollständig umgebaut wurde. Das Team aus Greifswald und Kiel nimmt bereits seit mehr als zehn Jahren regelmäßig an Parabelflügen teil. Trotzdem war dieser Flug eine erneute Premiere, da das Experiment für die geänderten Anforderungen des neuen Flugzeugs völlig neu aufgebaut werden musste.

Die Untersuchungen in Greifswald und Kiel werden seit mehr als zehn Jahren vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) gefördert. Das aktuelle Projekt „Kolloidale Plasmen unter Schwerelosigkeit: Technologietransfer von Kiel nach Greifswald“ (Förderkennzeichen 50WM1538 und 50WM1539) läuft 18 Monate und hat ein Volumen für Personal und Sachkosten von 200.000 Euro.

Weitere Informationen

Originalpublikation:
Phase separation of binary charged particle systems with small size disparities using a dusty plasma Phys. Rev. Lett.
(http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.115002)
Carsten Killer, Tim Bockwoldt, Stefan Schütt, Michael Himpel, André Melzer, and Alexander Piel

* Mikrofluidik (http://de.wikipedia.org/wiki/Mikrofluidik)

Bild 1
Carsten Killer verfolgt die Entmischung der Mikropartikel am Bildschirm während einer Parabel und kontrolliert den Verlauf des Experiments.
Copyright: Tim Bockwoldt

Bild 2
Carsten Killer, Tim Bockwoldt und Stefan Schütt (v. l.) verfolgen die Messungen während einer Parabel auf den Bildschirmen und kontrollieren, ob das Experiment wie geplant verläuft.
Copyright:Tim Bockwoldt

Bild 3
Tim Bockwoldt, André Melzer (hinten v. l.), Carsten Killer und Stefan Schütt (vorne v. l.) während einer Parabel.
Copyright: Tim Bockwoldt

Bild 4
Tim Bockwoldt (vorne) und Michael Himpel kalibrieren vor dem Flug die Elektrodenspannung, die ein wichtiger Faktor für die Plasmaeigenschaften ist. Das Plasma wird in der Metallkammer (Bildmitte) erzeugt.
Copyright: Carsten Killer

Bild 5
Ergebnis der Auswertungen. Zum ersten Zeitpunkt (oben) sind die fluoreszierenden Partikel (rote Kreuze) über die gesamte Staubwolke (blaue Kreise) verteilt. Zum zweiten Zeitpunkt (unten) befinden sich die fluoreszierenden Partikel ausschließlich am äußeren Rand der Staubwolke.
Copyright: Carsten Killer

Die Fotos können für redaktionelle Zwecke im Zusammenhang mit dieser Pressemitteilung kostenlos heruntergeladen und genutzt werden. Dabei ist der Name des Bildautors zu nennen.
Download: http://www.uni-greifswald.de/informieren/pressestelle/pressefotos/medienfotos-2016/medienfotos-maerz-2016.html

Ansprechpartner an der Universität Greifswald

Prof. Dr. André Melzer
Institut für Physik
Telefon 03834 86-4790
melzer@physik.uni-greifswald.de

Carsten Killer
Institut für Physik
Telefon 03834 86-4794
killer@physik.uni-greifswald.de

Ansprechpartner an der Universität Kiel

Professor Dr. Alexander Piel
Institut für Angewandte und Experimentelle Physik
Telefon 0431 880-3835
piel@physik.uni-kiel.de

Dr. Tim Bockwoldt
Institut für Angewandte und Experimentelle Physik
Telefon 0431 880-3837
bockwoldt@physik.uni-kiel.de

Jan Meßerschmidt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften