Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wo Schweifsterne Staub spucken - Wissenschaftler bestimmen die aktiven Regionen auf der Oberfläche von Kometen

26.04.2010
Kometen sind gefährliche Forschungsobjekte - zumindest aus der Nähe. Denn die winzigen Staubteilchen, die von den aktiven Regionen auf der Oberfläche ins All strömen, können Raumsonden beschädigen.

Wissenschaftler aus dem Max-Planck-Institut für Sonnensystemforschung im niedersächsischen Katlenburg-Lindau haben jetzt ein Computermodell entwickelt, das diese Regionen an Hand von bodengebundenen Aufnahmen lokalisiert. Das neue Verfahren könnte helfen, eine sichere Flugroute für Rosetta zu berechnen; die ESA-Raumsonde soll 2014 am Kometen Churyumov-Gerasimenko ankommen. (Astronomy & Astrophysics, 512, A60, 2010)

Der Kern eines Kometen ist weit mehr als ein unveränderlicher Brocken aus Eis und Staub. Unter dem Einfluss der Sonne gasen leicht flüchtige Substanzen wie etwa Wasser, Kohlendioxid und Kohlenmonoxid von manchen Stellen seiner Oberfläche - den aktiven Regionen - aus und reißen dabei Staubpartikel von bis zu einigen Zentimetern Durchmesser mit. Von der Erde aus sind diese Staubfontänen durch Teleskope als Strahlen oder Spiralen sichtbar, die den Kometen umgeben (siehe Abbildung, linkes Teilbild). Diese Strukturen sind eingebettet in eine Hülle aus Gas und Staub, die Koma, die von der Aktivität der Restoberfläche stammt und den gesamten Kometen umgibt.

"Aufnahmen, die wir von der Erde aus gewinnen, zeigen den Kometen und seine Strahlen auf eine zweidimensionale Fläche projiziert", sagt Hermann Böhnhardt vom Max-Planck-Institut für Sonnensystemforschung. Wo genau Staub und Gase ihren Ursprung haben, lässt sich deshalb nicht ohne Weiteres bestimmen.

Um dennoch den aktiven Regionen auf die Schliche zu kommen, wählten die Forscher einen indirekten Zugang, der erstmals auch die dreidimensionale Gestalt des Kometenkerns berücksichtigt. "Bisher wurden Kometen zu diesem Zweck vereinfachend als Kugeln oder Ellipsoide modelliert", erklärt Jean-Baptiste Vincent vom Lindauer Max-Planck-Institut. Der oftmals bizarren Form dieser schmutzigen Schneebälle wird dies bei vielen Anwendungen nicht gerecht.

Die Forscher entschieden sich deshalb, wenn möglich an dieser Stelle auf ein Standardverfahren zurückzugreifen: Beobachtet man einen Kometen während seiner gesamten Umdrehungsperiode durchs Teleskop, lässt die Veränderung seiner Leuchtkraft Rückschlüsse auf die Form des Kerns zu.

In einem nächsten Schritt fütterten die Forscher ihr Programm mit einer Anfangsvermutung darüber, wo sich die aktiven Regionen befinden. Zudem machten sie, basierend auf bisherigen Erkenntnissen, Annahmen über einige physikalische Parameter der Staubteilchen wie Größe und Startgeschwindigkeit beim Verlassen der Kernoberfläche. Als Ergebnis liefert die Computersimulation ein Bild, wie es ein Teleskop von der Erde aus aufnehmen würde. Durch Vergleich mit dem echten Blick durchs Fernrohr lassen sich dann die modellierten Bilder immer weiter verfeinern, bis Simulation und echte Aufnahme übereinstimmen.

Den ersten Test hat das neue Verfahren bereits bestanden. Denn die Wissenschaftler konnten es erfolgreich auf den Kometen Tempel 1 anwenden, der im Jahr 2005 Ziel der NASA-Mission Deep Impact war. "Obwohl wir seitdem genau wissen, wo die aktiven Regionen auf Tempel 1 liegen, haben wir uns für den Test unseres Programms zunächst ,dumm` gestellt", erklärt Vincent.

Die Forscher nutzten nur Beobachtungen, die sie von der Erde aus im Rahmen eigener Messprogramme gewonnen hatten. Allein die dreidimensionale Form des Kometenkerns entnahmen sie den Ergebnissen der Deep Impact Mission.

Als Nächstes wollen die Forscher nun die aktiven Regionen des Kometen Churyumov-Gerasimenko berechnen, dem Zielkometen der Sonde Rosetta, auf dem die Landeeinheit Philae im Jahr 2014 aufsetzen soll. Die Mission, zu der auch das Max-Planck-Institut für Sonnensystemforschung viele wissenschaftliche Instrumente beigesteuert hat, ist seit 2004 unterwegs zu ihrem Ziel jenseits der Umlaufbahn des Mars und der Asteroiden. Das neue Verfahren könnte dazu beitragen, in der entscheidenden Phase der Mission eine sichere Flugroute durch die Kometenkoma und möglicherweise sogar die Landestelle zu bestimmen.

Originalveröffentlichung:

J.-B. Vincent, H. Böhnhardt, and L.M. Lara
A numerical model of cometary dust coma structures - Application to comet 9P/Tempel 1

Astronomy&Astrophysics 512, A60 (2010), DOI: 10.1051/0004-6361/200913418

Weitere Informationen erhalten Sie von:

Dr. Birgit Krummheuer, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Tel.: +49 5556 979-462, Mobil: +49 173 3958625
E-Mail: Krummheuer@mps.mpg.de
Jean-Baptiste Vincent
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Tel.: +49 5556 979-291
E-Mail: Vincent@mps.mpg.de
Dr. Hermann Böhnhardt
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Tel.: +49 5556 979-545
E-Mail: Boehnhardt@mps.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mps.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie