Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Schweif der Venus

29.01.2013
Wenn der Sonnenwind nahezu abreißt, dehnt sich die Ionosphäre unseres Nachbarplaneten weit ins All aus

Die Hülle aus Elektronen und Ionen, welche die Venus in 150 bis 300 Kilometern Höhe umgibt, kann sich in Ausnahmefällen an ihrer sonnenabgewandten Seite schweifartig ins Weltall ausdehnen. Zu dieser seltenen Verformung kommt es, wenn der Sonnenwind – ein Strom aus Elektronen und Protonen – nahezu abbricht. Wissenschaftler unter Leitung des Max-Planck-Instituts für Sonnensystemforschung haben ein solches Ereignis mit Instrumenten an Bord der europäischen Raumsonde Venus Express erstmals genau untersucht. Die Ergebnisse helfen bei der Beantwortung der Frage, ob im Sonnensystem Teilchen von einem Planeten zu einem anderen wandern können – etwa von der Venus zur benachbarten Erde.


Gasfahne im All: Unter normalen Bedingungen umgibt die Ionosphäre die Venus in 150 bis 300 Kilometern Höhe. Die induzierten Magnetfelder – angedeutet durch die gelben Linien – halten sie dort fest (links). Bei sehr schwachem Sonnenwind kann sich die Ionosphäre ausdehnen; an der Nachtseite entsteht dadurch eine Art Plasmaschweif (rechts). © ESA/Wei et al (2012)


Spion bei der Liebesgöttin: Die europäische Raumsonde Venus Express erforscht unseren Nachbarplaneten seit dem Jahr 2006. © ESA / C. Carreau

Am 3. und 4. August 2010 hielt die Sonne den Atem an: Nach mehreren heftigen Teilchenausbrüchen kam der Sonnenwind etwa 18 Stunden lang fast zum Erliegen. Die Venus erreichten in dieser Phase nur noch 0,2 Teilchen pro Kubikzentimeter. An gewöhnlichen Tagen sind es etwa 25- bis 50-mal so viele.

„Phasen mit solch schwachem Sonnenwind kommen selten, aber immer wieder vor“, erklärt Markus Fränz vom Max-Planck-Institut für Sonnensystemforschung in Katlenburg-Lindau. „Allerdings war das Ereignis im August 2010 das erste dieser Art seit dem Start der Raumsonde Venus Express vor etwa sieben Jahren.“ Dank der stark elliptischen Umlaufbahn der Sonde um den Planeten bot sich den Forschern die Gelegenheit zu untersuchen, welche Prozesse der schwache Sonnenwind in der Atmosphäre der Venus auslöst.

Wie auch die Erde ist die Venus von einer Ionosphäre – einer Hülle aus Elektronen und Ionen – umgeben. Wissenschaftler bezeichnen dies als Plasma. Es entsteht, wenn extrem kurzwelliges ultraviolettes Licht und Röntgenstrahlung von der Sonne an der Tagseite der Planeten auf die äußersten Schichten der Atmosphäre treffen. Auf der Erde hält das starke Magnetfeld die Teilchen gefangen. Sie rotieren deshalb im Gleichtakt mit der Erde (und ihrem Magnetfeld) um die Erdachse – und erreichen so auch die Nachtseite. Auf diese Weise entsteht eine Hülle aus geladenen Teilchen, welche die Erde vollständig umschließt.

„Auf der Venus ist das völlig anders“, erklärt Yong Wie, Forscher am Lindauer Max-Planck-Institut und Erstautor der neuen Studie. „Unserem Schwesterplaneten fehlt nicht nur das eigene Magnetfeld. Auch die Drehung um die eigene Achse vollzieht sich hier deutlich langsamer“, ergänzt er. Für eine Umdrehung benötigt die Venus etwa 243 Erdentage.

Dennoch lässt sich auch auf der Nachtseite der Venus eine Ionosphäre beobachten. „Messungen älterer Sonde hatten gezeigt, dass Elektronen und Ionen (im Fall der Venus hauptsächlich Sauerstoff-Ionen) von der Tag- zur Nachtseite strömen“, sagt Fränz. Motor dieser Bewegung ist der hohe Plasmadruck an der Tagseite. Ähnlich wie ein komprimiertes Gas, das aus einer Druckflasche befreit wird, strömt das Plasma aus dem Gebiet mit hohem Druck in ein Gebiet mit geringerem Druck.

Mit dem Magnetometer MAG und dem Instrument ASPERA-4 (Analyzer of Space Plasmas and Energetic Atoms) an Bord der Raumsonde Venus Express haben sich die Forscher nun ein genaueres Bild dieser Vorgänge gemacht. Es zeigte sich, dass bei fehlendem Sonnenwind die Ionosphäre der Venus nicht magnetisiert wird. Unter normalen Bedingungen binden diese induzierten Magnetfelder die geladenen Teilchen der Ionosphäre in Planetennähe. Bei schwachem Sonnenwind hingegen dehnt sich die Ionosphäre in der Übergangsregion zwischen Tag- und Nachtseite aus.

„Die geladenen Teilchen können auf diese Weise einfacher und deshalb in größerer Zahl zur Nachtseite gelangen“, erklärt Markus Fränz. Dort bildet sich dann eine Art Plasmaballon, der sich schweifartig ins All erstreckt. Die gesamte Ionosphäre erhält so eine tropfenförmige Gestalt.

Die neuen Messungen belegen, dass der Plasmaschweif etwa 15000 Kilometer weit in den Weltraum ragt. „Er könnte aber auch deutlich länger sein und sich möglicherweise sogar über Millionen von Kilometern erstrecken“, sagt Wei. Die Flugroute während der Messungen führte die Raumsonde jedoch nicht direkt hinter die Venus, sodass sich diese Frage nicht abschließend klären lässt.

Auch ob sich die Ionosphäre der Venus auf diese Weise prinzipiell sogar bis zur Erde ausdehnen könnte, ist unklar. Jedenfalls hatten Max-Planck-Forscher im Jahr 1996 Venusplasma in Erdnähe nachgewiesen. Dafür werteten sie Messdaten der Raumsonde Soho aus, die im Gleichtakt mit der Erde um die Sonne kreist. Möglicherweise bietet der Mechanismus, den die Wissenschaftler nun beschreiben, eine Erklärung für solche Ereignisse. „Vielleicht bieten Phasen extrem schwachen Sonnenwinds planetaren Teilchen die Möglichkeit, von den sonnennahen Planeten zu weiter außen gelegenen zu wandern“, sagt Wei.

Ansprechpartner

Dr. Birgit Krummheuer,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-462
E-Mail: Krummheuer@­mps.mpg.de
Dr. Markus Fränz,
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-441
E-Mail: Fraenz@­mps.mpg.de
Dr. Yong Wei,
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-221
E-Mail: Wei@­mps.mpg.de

Originalpublikation
Y. Wei, M. Fraenz et al.
A teardrop-shaped ionosphere at Venus in tenuous solar wind
Planetary

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6882886/Schweif_der_Venus?filter_order=L

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Entmischende Kollisionen
05.02.2016 | Ludwig-Maximilians-Universität München

nachricht Turbulente Zeiten: Wenn sich Sterne näher kommen
04.02.2016 | Heidelberger Institut für Theoretische Studien gGmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automatisiertes Fahren: Lenken ohne Grenzen

Projekt OmniSteer startet mit 3,4 Millionen Euro Budget, um urbane Manövrierfähigkeit von Autos zu steigern

Autos steigern die Mobilität ihrer Nutzer. In engen Innenstädten jedoch stoßen sie an die Grenzen der eigenen Manövrierfähigkeit. Etwa für Vielparker wie...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Embedded World: Fraunhofer ESK zeigt Entwicklung eines ausfallsicheren Bordnetzes für die Autos der Zukunft

Hochautomatisiertes Fahren setzt voraus, dass Fahrzeuge Fehler selbstständig beheben können, bis der Fahrer in der Lage ist, selbst einzugreifen. Dazu muss im Bordnetz des Autos die Ausfallsicherheit kritischer Funktionen garantiert sein. Das Fraunhofer ESK zeigt auf der Embedded World in Nürnberg (23. bis 25. Februar), wie das mit Erweiterungen des aktuellen AUTOSAR-Standards umzusetzen ist. Hierfür stellen die ESK-Forscher auch eine Werkzeugkette vor, mit der solche Bordnetze entwickelt werden können (Halle 4 / Stand 460).

Fällt in einem hochautomatisierten Fahrzeug eine Steuerungseinheit aus, muss das Fahrzeug selbstständig reagieren, bis der Fahrer eingreifen und das Fahren...

Im Focus: Fusionsanlage Wendelstein 7-X erzeugt erstes Wasserstoff-Plasma

Bundeskanzlerin schaltet Plasma ein / Beginn des wissenschaftlichen Experimentierbetriebs

Am 3. Februar 2016 wurde in der Fusionsanlage Wendelstein 7-X im Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald das erste Wasserstoff-Plasma erzeugt....

Im Focus: Mikroskopie: Neun auf einen Streich

Fortschritt für die biomedizinische Bildgebung: Im Biozentrum der Uni Würzburg wurde die Fluoreszenzmikroskopie so weiterentwickelt, dass sich jetzt bis zu neun verschiedene Zellstrukturen gleichzeitig markieren und abbilden lassen.

Mit der Fluoreszenzmikroskopie können Forscher Biomoleküle in Zellen sichtbar machen. Sie markieren die Moleküle mit fluoreszierenden Sonden, regen diese mit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

25 Jahre tropische Meeresforschung in Bremen: das Leibniz-Zentrum für Marine Tropenökologie

05.02.2016 | Veranstaltungen

Programmieren lernen leicht gemacht - GFOS lädt zum GFOS Java Summercamp

04.02.2016 | Veranstaltungen

Bochum Treff Bergmannsheil: 200 Chirurgen diskutierten aktuelle Therapien bei Protheseninfektionen

04.02.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Pharmapack: Neue Verpackungslösungen von SCHOTT

05.02.2016 | Messenachrichten

Diese Zellen sagen, wo’s lang geht

05.02.2016 | Biowissenschaften Chemie

„LAVA“ kann Implantate verbessern

05.02.2016 | Materialwissenschaften