Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Schweif der Venus

29.01.2013
Wenn der Sonnenwind nahezu abreißt, dehnt sich die Ionosphäre unseres Nachbarplaneten weit ins All aus

Die Hülle aus Elektronen und Ionen, welche die Venus in 150 bis 300 Kilometern Höhe umgibt, kann sich in Ausnahmefällen an ihrer sonnenabgewandten Seite schweifartig ins Weltall ausdehnen. Zu dieser seltenen Verformung kommt es, wenn der Sonnenwind – ein Strom aus Elektronen und Protonen – nahezu abbricht. Wissenschaftler unter Leitung des Max-Planck-Instituts für Sonnensystemforschung haben ein solches Ereignis mit Instrumenten an Bord der europäischen Raumsonde Venus Express erstmals genau untersucht. Die Ergebnisse helfen bei der Beantwortung der Frage, ob im Sonnensystem Teilchen von einem Planeten zu einem anderen wandern können – etwa von der Venus zur benachbarten Erde.


Gasfahne im All: Unter normalen Bedingungen umgibt die Ionosphäre die Venus in 150 bis 300 Kilometern Höhe. Die induzierten Magnetfelder – angedeutet durch die gelben Linien – halten sie dort fest (links). Bei sehr schwachem Sonnenwind kann sich die Ionosphäre ausdehnen; an der Nachtseite entsteht dadurch eine Art Plasmaschweif (rechts). © ESA/Wei et al (2012)


Spion bei der Liebesgöttin: Die europäische Raumsonde Venus Express erforscht unseren Nachbarplaneten seit dem Jahr 2006. © ESA / C. Carreau

Am 3. und 4. August 2010 hielt die Sonne den Atem an: Nach mehreren heftigen Teilchenausbrüchen kam der Sonnenwind etwa 18 Stunden lang fast zum Erliegen. Die Venus erreichten in dieser Phase nur noch 0,2 Teilchen pro Kubikzentimeter. An gewöhnlichen Tagen sind es etwa 25- bis 50-mal so viele.

„Phasen mit solch schwachem Sonnenwind kommen selten, aber immer wieder vor“, erklärt Markus Fränz vom Max-Planck-Institut für Sonnensystemforschung in Katlenburg-Lindau. „Allerdings war das Ereignis im August 2010 das erste dieser Art seit dem Start der Raumsonde Venus Express vor etwa sieben Jahren.“ Dank der stark elliptischen Umlaufbahn der Sonde um den Planeten bot sich den Forschern die Gelegenheit zu untersuchen, welche Prozesse der schwache Sonnenwind in der Atmosphäre der Venus auslöst.

Wie auch die Erde ist die Venus von einer Ionosphäre – einer Hülle aus Elektronen und Ionen – umgeben. Wissenschaftler bezeichnen dies als Plasma. Es entsteht, wenn extrem kurzwelliges ultraviolettes Licht und Röntgenstrahlung von der Sonne an der Tagseite der Planeten auf die äußersten Schichten der Atmosphäre treffen. Auf der Erde hält das starke Magnetfeld die Teilchen gefangen. Sie rotieren deshalb im Gleichtakt mit der Erde (und ihrem Magnetfeld) um die Erdachse – und erreichen so auch die Nachtseite. Auf diese Weise entsteht eine Hülle aus geladenen Teilchen, welche die Erde vollständig umschließt.

„Auf der Venus ist das völlig anders“, erklärt Yong Wie, Forscher am Lindauer Max-Planck-Institut und Erstautor der neuen Studie. „Unserem Schwesterplaneten fehlt nicht nur das eigene Magnetfeld. Auch die Drehung um die eigene Achse vollzieht sich hier deutlich langsamer“, ergänzt er. Für eine Umdrehung benötigt die Venus etwa 243 Erdentage.

Dennoch lässt sich auch auf der Nachtseite der Venus eine Ionosphäre beobachten. „Messungen älterer Sonde hatten gezeigt, dass Elektronen und Ionen (im Fall der Venus hauptsächlich Sauerstoff-Ionen) von der Tag- zur Nachtseite strömen“, sagt Fränz. Motor dieser Bewegung ist der hohe Plasmadruck an der Tagseite. Ähnlich wie ein komprimiertes Gas, das aus einer Druckflasche befreit wird, strömt das Plasma aus dem Gebiet mit hohem Druck in ein Gebiet mit geringerem Druck.

Mit dem Magnetometer MAG und dem Instrument ASPERA-4 (Analyzer of Space Plasmas and Energetic Atoms) an Bord der Raumsonde Venus Express haben sich die Forscher nun ein genaueres Bild dieser Vorgänge gemacht. Es zeigte sich, dass bei fehlendem Sonnenwind die Ionosphäre der Venus nicht magnetisiert wird. Unter normalen Bedingungen binden diese induzierten Magnetfelder die geladenen Teilchen der Ionosphäre in Planetennähe. Bei schwachem Sonnenwind hingegen dehnt sich die Ionosphäre in der Übergangsregion zwischen Tag- und Nachtseite aus.

„Die geladenen Teilchen können auf diese Weise einfacher und deshalb in größerer Zahl zur Nachtseite gelangen“, erklärt Markus Fränz. Dort bildet sich dann eine Art Plasmaballon, der sich schweifartig ins All erstreckt. Die gesamte Ionosphäre erhält so eine tropfenförmige Gestalt.

Die neuen Messungen belegen, dass der Plasmaschweif etwa 15000 Kilometer weit in den Weltraum ragt. „Er könnte aber auch deutlich länger sein und sich möglicherweise sogar über Millionen von Kilometern erstrecken“, sagt Wei. Die Flugroute während der Messungen führte die Raumsonde jedoch nicht direkt hinter die Venus, sodass sich diese Frage nicht abschließend klären lässt.

Auch ob sich die Ionosphäre der Venus auf diese Weise prinzipiell sogar bis zur Erde ausdehnen könnte, ist unklar. Jedenfalls hatten Max-Planck-Forscher im Jahr 1996 Venusplasma in Erdnähe nachgewiesen. Dafür werteten sie Messdaten der Raumsonde Soho aus, die im Gleichtakt mit der Erde um die Sonne kreist. Möglicherweise bietet der Mechanismus, den die Wissenschaftler nun beschreiben, eine Erklärung für solche Ereignisse. „Vielleicht bieten Phasen extrem schwachen Sonnenwinds planetaren Teilchen die Möglichkeit, von den sonnennahen Planeten zu weiter außen gelegenen zu wandern“, sagt Wei.

Ansprechpartner

Dr. Birgit Krummheuer,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-462
E-Mail: Krummheuer@­mps.mpg.de
Dr. Markus Fränz,
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-441
E-Mail: Fraenz@­mps.mpg.de
Dr. Yong Wei,
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-221
E-Mail: Wei@­mps.mpg.de

Originalpublikation
Y. Wei, M. Fraenz et al.
A teardrop-shaped ionosphere at Venus in tenuous solar wind
Planetary

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6882886/Schweif_der_Venus?filter_order=L

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

nachricht Rotierende Rugbybälle unter den massereichsten Galaxien
23.05.2018 | Leibniz-Institut für Astrophysik Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rotierende Rugbybälle unter den massereichsten Galaxien

23.05.2018 | Physik Astronomie

Invasive Quallen: Strömungen als Ausbreitungsmotor

23.05.2018 | Ökologie Umwelt- Naturschutz

Matrix-Theorie als Ursprung von Raumzeit und Kosmologie

23.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics