Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Schweif der Venus

29.01.2013
Wenn der Sonnenwind nahezu abreißt, dehnt sich die Ionosphäre unseres Nachbarplaneten weit ins All aus

Die Hülle aus Elektronen und Ionen, welche die Venus in 150 bis 300 Kilometern Höhe umgibt, kann sich in Ausnahmefällen an ihrer sonnenabgewandten Seite schweifartig ins Weltall ausdehnen. Zu dieser seltenen Verformung kommt es, wenn der Sonnenwind – ein Strom aus Elektronen und Protonen – nahezu abbricht. Wissenschaftler unter Leitung des Max-Planck-Instituts für Sonnensystemforschung haben ein solches Ereignis mit Instrumenten an Bord der europäischen Raumsonde Venus Express erstmals genau untersucht. Die Ergebnisse helfen bei der Beantwortung der Frage, ob im Sonnensystem Teilchen von einem Planeten zu einem anderen wandern können – etwa von der Venus zur benachbarten Erde.


Gasfahne im All: Unter normalen Bedingungen umgibt die Ionosphäre die Venus in 150 bis 300 Kilometern Höhe. Die induzierten Magnetfelder – angedeutet durch die gelben Linien – halten sie dort fest (links). Bei sehr schwachem Sonnenwind kann sich die Ionosphäre ausdehnen; an der Nachtseite entsteht dadurch eine Art Plasmaschweif (rechts). © ESA/Wei et al (2012)


Spion bei der Liebesgöttin: Die europäische Raumsonde Venus Express erforscht unseren Nachbarplaneten seit dem Jahr 2006. © ESA / C. Carreau

Am 3. und 4. August 2010 hielt die Sonne den Atem an: Nach mehreren heftigen Teilchenausbrüchen kam der Sonnenwind etwa 18 Stunden lang fast zum Erliegen. Die Venus erreichten in dieser Phase nur noch 0,2 Teilchen pro Kubikzentimeter. An gewöhnlichen Tagen sind es etwa 25- bis 50-mal so viele.

„Phasen mit solch schwachem Sonnenwind kommen selten, aber immer wieder vor“, erklärt Markus Fränz vom Max-Planck-Institut für Sonnensystemforschung in Katlenburg-Lindau. „Allerdings war das Ereignis im August 2010 das erste dieser Art seit dem Start der Raumsonde Venus Express vor etwa sieben Jahren.“ Dank der stark elliptischen Umlaufbahn der Sonde um den Planeten bot sich den Forschern die Gelegenheit zu untersuchen, welche Prozesse der schwache Sonnenwind in der Atmosphäre der Venus auslöst.

Wie auch die Erde ist die Venus von einer Ionosphäre – einer Hülle aus Elektronen und Ionen – umgeben. Wissenschaftler bezeichnen dies als Plasma. Es entsteht, wenn extrem kurzwelliges ultraviolettes Licht und Röntgenstrahlung von der Sonne an der Tagseite der Planeten auf die äußersten Schichten der Atmosphäre treffen. Auf der Erde hält das starke Magnetfeld die Teilchen gefangen. Sie rotieren deshalb im Gleichtakt mit der Erde (und ihrem Magnetfeld) um die Erdachse – und erreichen so auch die Nachtseite. Auf diese Weise entsteht eine Hülle aus geladenen Teilchen, welche die Erde vollständig umschließt.

„Auf der Venus ist das völlig anders“, erklärt Yong Wie, Forscher am Lindauer Max-Planck-Institut und Erstautor der neuen Studie. „Unserem Schwesterplaneten fehlt nicht nur das eigene Magnetfeld. Auch die Drehung um die eigene Achse vollzieht sich hier deutlich langsamer“, ergänzt er. Für eine Umdrehung benötigt die Venus etwa 243 Erdentage.

Dennoch lässt sich auch auf der Nachtseite der Venus eine Ionosphäre beobachten. „Messungen älterer Sonde hatten gezeigt, dass Elektronen und Ionen (im Fall der Venus hauptsächlich Sauerstoff-Ionen) von der Tag- zur Nachtseite strömen“, sagt Fränz. Motor dieser Bewegung ist der hohe Plasmadruck an der Tagseite. Ähnlich wie ein komprimiertes Gas, das aus einer Druckflasche befreit wird, strömt das Plasma aus dem Gebiet mit hohem Druck in ein Gebiet mit geringerem Druck.

Mit dem Magnetometer MAG und dem Instrument ASPERA-4 (Analyzer of Space Plasmas and Energetic Atoms) an Bord der Raumsonde Venus Express haben sich die Forscher nun ein genaueres Bild dieser Vorgänge gemacht. Es zeigte sich, dass bei fehlendem Sonnenwind die Ionosphäre der Venus nicht magnetisiert wird. Unter normalen Bedingungen binden diese induzierten Magnetfelder die geladenen Teilchen der Ionosphäre in Planetennähe. Bei schwachem Sonnenwind hingegen dehnt sich die Ionosphäre in der Übergangsregion zwischen Tag- und Nachtseite aus.

„Die geladenen Teilchen können auf diese Weise einfacher und deshalb in größerer Zahl zur Nachtseite gelangen“, erklärt Markus Fränz. Dort bildet sich dann eine Art Plasmaballon, der sich schweifartig ins All erstreckt. Die gesamte Ionosphäre erhält so eine tropfenförmige Gestalt.

Die neuen Messungen belegen, dass der Plasmaschweif etwa 15000 Kilometer weit in den Weltraum ragt. „Er könnte aber auch deutlich länger sein und sich möglicherweise sogar über Millionen von Kilometern erstrecken“, sagt Wei. Die Flugroute während der Messungen führte die Raumsonde jedoch nicht direkt hinter die Venus, sodass sich diese Frage nicht abschließend klären lässt.

Auch ob sich die Ionosphäre der Venus auf diese Weise prinzipiell sogar bis zur Erde ausdehnen könnte, ist unklar. Jedenfalls hatten Max-Planck-Forscher im Jahr 1996 Venusplasma in Erdnähe nachgewiesen. Dafür werteten sie Messdaten der Raumsonde Soho aus, die im Gleichtakt mit der Erde um die Sonne kreist. Möglicherweise bietet der Mechanismus, den die Wissenschaftler nun beschreiben, eine Erklärung für solche Ereignisse. „Vielleicht bieten Phasen extrem schwachen Sonnenwinds planetaren Teilchen die Möglichkeit, von den sonnennahen Planeten zu weiter außen gelegenen zu wandern“, sagt Wei.

Ansprechpartner

Dr. Birgit Krummheuer,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-462
E-Mail: Krummheuer@­mps.mpg.de
Dr. Markus Fränz,
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-441
E-Mail: Fraenz@­mps.mpg.de
Dr. Yong Wei,
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-221
E-Mail: Wei@­mps.mpg.de

Originalpublikation
Y. Wei, M. Fraenz et al.
A teardrop-shaped ionosphere at Venus in tenuous solar wind
Planetary

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6882886/Schweif_der_Venus?filter_order=L

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weißer Zwerg heizt rotem Zwergstern mit mysteriöser Strahlung mächtig ein
28.07.2016 | ESO Science Outreach Network - Haus der Astronomie

nachricht Einsame Atome glücklich vereint
26.07.2016 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie biologische Vielfalt das Ohr fit macht

Göttinger Hörforschung mit neuen Erkenntnissen: Das Ohr setzt Synapsen mit verschiedenen Eigenschaften ein, um unterschiedlich lauten Schall zu verarbeiten. Forschungsergebnisse veröffentlicht in der Fachzeitschrift „Proceedings of the National Academy of Sciences“

Der menschliche Hörsinn verarbeitet einen immensen Bereich an Lautstärken. Wie schafft es das Ohr, etwa über eine Million Schalldruck-Variationen zu...

Im Focus: Ultrakompakter Photodetektor

Der Datenverkehr wächst weltweit. Glasfaserkabel transportieren die Informationen mit Lichtgeschwindigkeit über weite Entfernungen. An ihrem Ziel müssen die optischen Signale jedoch in elektrische Signale gewandelt werden, um im Computer verarbeitet zu werden. Forscher am KIT haben einen neuartigen Photodetektor entwickelt, dessen geringer Platzbedarf neue Maßstäbe setzt: Das Bauteil weist eine Grundfläche von weniger als einem Millionstel Quadratmillimeter auf, ohne die Datenübertragungsrate zu beeinträchtigen, wie sie im Fachmagazin Optica nun berichten. (DOI: 10.1364/OPTICA.3.000741)

Die neuentwickelten Photodetektoren, die weltweit kleinsten Photodetektoren für die optische Datenübertragung, eröffnen die Möglichkeit, durch integrierte...

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: Neues Forschungsnetzwerk für Mikrobiomforschung

Mikroben und Viren haben weitreichenden Einfluss auf die Gesundheit von Mensch und Tier. Die neu gegründete "Austrian Microbiome Initiative" (AMICI) fördert die nationale Mikrobiomforschung und vernetzt MedizinerInnen und ForscherInnen verschiedenster Fachrichtungen zur Nutzung von Synergien.

Bakterien, Archaeen, Pilze, Viren – Milliarden von Mikroorganismen leben in Symbiose in und auf Menschen und Tieren. Diese mikroskopisch kleinen Lebewesen...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Fachkongress zu additiven Fertigungsverfahren am 14. und 15. September in Aachen

28.07.2016 | Veranstaltungen

Rheumatologen tagen in Frankfurt: Mehr Forschung für Rheuma gefordert

28.07.2016 | Veranstaltungen

10. Internationales Hodgkin-Symposium in Köln

28.07.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Pilot-Fertigung für thermoelektrische Module

28.07.2016 | Energie und Elektrotechnik

Flexible Kontrolle über erlernte Lautäußerungen bei Orang-Utans

28.07.2016 | Biowissenschaften Chemie

Im menschlichen Körper schlummert ein potenzieller Lebensretter

28.07.2016 | Biowissenschaften Chemie