Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwarzes Loch schleudert Teilchen ins All

03.07.2009
Auf der Suche nach Hinweisen auf die Entstehung und Entwicklung des Universums, richten die Astronomen ihren Blick auf die hochenergetische Gammastrahlung.

Jetzt konnten Wissenschaftler bei Beobachtungen der Galaxie Messier 87 erstmals nachweisen, wo die Gammastrahlung genau entsteht - in unmittelbarer Nähe des zentralen schwarzen Lochs der Galaxie. Für die Untersuchung haben sich die drei weltweit führenden wissenschaftlichen Teams in der Hochenergie-Gamma-Astrophysik mit einer Gruppe von Radioastronomen zusammengeschlossen.

An der Entdeckung waren auch Forscher um Prof. Dr. Christian Stegmann vom Erlangen Centre for Astroparticle Physics (ECAP) der Universität Erlangen-Nürnberg beteiligt.

Auf der Suche nach Hinweisen auf die Entstehung und Entwicklung des Universums, richten die Astronomen ihren Blick seit einigen Jahren mit großem Interesse auf die hochenergetische Gammastrahlung. Jetzt konnten Wissenschaftler bei Beobachtungen der Galaxie Messier 87 erstmals nachweisen, wo die Gammastrahlung genau entsteht - nämlich in unmittelbarer Nähe des zentralen schwarzen Lochs der Galaxie. Für die Untersuchung haben sich die drei weltweit führenden wissenschaftlichen Teams in der Hochenergie-Gamma-Astrophysik mit einer Gruppe von Radioastronomen zusammengeschlossen. An der Entdeckung waren auch Forscher um Prof. Dr. Christian Stegmann vom Erlangen Centre for Astroparticle Physics (ECAP) der Universität Erlangen-Nürnberg beteiligt. Ihre Ergebnisse haben die Wissenschaftler in der Ausgabe des Magazins Science Express vom 2. Juli 2009 veröffentlicht.

Messier 87 ist eine gigantische, elliptische Galaxie in unmittelbarer Nachbarschaft unserer Galaxis - etwa 55 Millionen Lichtjahre von der Erde entfernt. In ihrem Zentrum befindet sich ein schwarzes Loch, das mehr als sechs Milliarden mal massereicher ist als unsere Sonne. Dort werden geladene Teilchen nahezu auf Lichtgeschwindigkeit beschleunigt und in gewaltigen Plasmaströmen ins Weltall geschleudert. Wenn die Elektronen und Protonen mit ihrer Umgebung reagieren, entsteht Gammastrahlung - die höchstenergetische elektromagnetische Strahlung, die beobachtbar ist.

Einzigartige Messkampagne
Jetzt ist es zum ersten Mal gelungen, den genauen Ort im Zentrum der Galaxie zu bestimmen, an dem Teilchen beschleunigt werden. Dazu beobachteten die Wissenschaftler den aktiven Kern der Galaxis Messier 87 in den niedrigsten und höchsten Bereichen des elektromagnetischen Spektrums - in einer in dieser Größenordnung noch nie da gewesenen Messkampagne.

Anfang 2008 schlossen sich die drei weltweit führenden Observatorien zur Beobachtung hochenergetischer Gammastrahlung - VERITAS, H.E.S.S. sowie MAGIC - zusammen und zeichneten mehr als 120 Stunden lang Daten von Messier 87 auf. In dieser Zeit konnten die Astronomen zwei große Strahlungsausbrüche im sehr hochenergetischen Gammastrahlungsbereich verfolgen. Gleichzeitig richteten Wissenschaftler das hochauflösende Radioteleskopsystem Very Large Baseline Array auf den inneren Bereich von Messier 87 und verzeichneten einen stetigen Anstieg des Radioflusses im Zentrum der Galaxie - aus der unmittelbaren Nähe des supermassiven schwarzen Lochs. Die Kombination von Beobachtungen in den niedrigsten (Radiowellen) und höchsten (Gammastrahlung) Bereichen des elektromagnetischen Spektrums ermöglichte es zum ersten Mal, den genauen Ort des Gammastrahlungsausbruches und damit den Ort der Teilchenbeschleunigung in Messier 87 zu identifizieren.

Die Forscher der Universität Erlangen-Nürnberg um den Astrophysiker Prof. Dr. Christian Stegmann arbeiten seit Anfang 2004 am H.E.S.S.-Projekt mit. Die vier Teleskope des High Energy Stereoscopic System in Namibia gehören der neuesten Generation der atmosphärischen Cherenkov-Teleskope an. Mit ihren Spiegeldurchmessern von jeweils 13 Metern und ultra-schneller Elektronik beobachten sie das so genannte Cherenkov-Licht. Das sind schwache blaue Lichtblitze, die entstehen, wenn hochenergetische Gammastrahlen mit den Atomen und Molekülen der Atmosphäre reagieren.

Der H.E.S.S.-Kollaboration gehören mehr als 150 Wissenschaftler aus Deutschland, Frankreich, Großbritannien, Polen, Tschechien, Irland, Österreich, Schweden, Armenien, Südafrika und Namibia an. Ihre Kooperation hat schon zu zahlreichen wichtigen Entdeckungen geführt, beispielsweise dem ersten astronomischen Bild eines Supernova-Überrestes in hochenergetischer Gammastrahlung und der Entdeckung einer großen Anzahl von Gammastrahlungsquellen in der galaktischen Ebene.

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 26.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel "familiengerechte Hochschule".

Weitere Informationen für die Medien:

Prof. Dr. Christian Stegmann
Erlangen Centre for Astroparticle Physics
Tel.: 09131/85-28964
stegmann@physik.uni-erlangen.de
Dr. Martin Raue
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: 06221/516-470
martin.raue@mpi-hd.mpg.de

Ute Missel | idw
Weitere Informationen:
http://www.mpi-hd.mpg.de
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics