Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aus dem Schwarm gepickt: Lichtblitze kontrollieren einzelne Elektronen in Molekülen

01.09.2009
Einem deutsch-niederländischen Physikerteam des Max-Planck-Instituts für Quantenoptik (MPQ) in Garching, dem Institute for Atomic and Molecular Physics (AMOLF) in Amsterdam und Chemikern der Ludwig-Maximilians-Universität (LMU) München ist es erstmals gelungen, einzelne Elektronen in einem Vielteilchensystem mithilfe von Laserpulsen zu kontrollieren.

Raubfischen ist das Problem wohlbekannt: In einem Schwarm von kleinen Fischen ist es schwierig eine Beute herauszulösen. Ähnlich verhält es sich im Kosmos von Atomen und Molekülen, deren Verhalten und Eigenschaften von "Schwärmen" von Elektronen beeinflusst werden.

Will man hier Kontrolle über einzelne Elektronen in einem Verbund erlangen, benötigt man ultrakurze Lichtpulse von wenigen Femtosekunden Dauer. Physiker des MPQ in Garching und Chemiker der LMU erlangten nun zum ersten Mal die Kontrolle über einzelne, negativ geladene Elementarteilchen in einem Elektronenverbund mithilfe von Licht.

Die Forscher haben damit ein wichtiges Etappenziel erreicht, das sie sich im Exzellenzcluster "Munich Centre for Advanced Photonics" (MAP) gesetzt haben. Sie berichten darüber im Fachmagazin "Physical Review Letters" (Online-Ausgabe: EID 103/103002, 1. September 2009; Print-Ausgabe: 4. September 2009).

Elektronen sind ultraschnelle Zeitgenossen. In Atomen und Molekülen bewegen sie sich innerhalb von Attosekunden. Eine Attosekunde dauert dabei nur ein Milliardstel einer milliardstel Sekunde. Eine gezielte Kontrolle über diese Teilchen kann man mit Lichtpulsen erlangen, die nur wenige Femtosekunden bis hin zu Attosekunden dauern und somit mit ihnen auf der Zeitskala der Elektronenbewegung wechselwirken. Die kurzen Pulse verfügen über starke elektrische und magnetische Felder, die die geladenen Teilchen beeinflussen. Eine Femtosekunde dauert dabei 1000mal länger als eine Attosekunde. Bei Molekülen mit nur einem Elektron, wie etwa beim Deuterium-Molekül-Ion, gestaltet sich diese Kontrolle durch die Lichtblitze noch relativ leicht. Das hat ein Team um Professor Marc Vrakking und Dr. Matthias Kling am AMOLF in Amsterdam in Zusammenarbeit mit Professor Ferenc Krausz (LMU und MPQ) bereits im Jahr 2006 gezeigt.

Nun ist es den Wissenschaftlern um den MPQ-Nachwuchsgruppenleiter Dr. Matthias Kling, in Zusammenarbeit mit Professor Marc Vrakking und Professor Regina de Vivie-Riedle von der LMU gelungen, die äußeren Elektronen in der Valenzschale des komplexeren Moleküls Kohlenstoffmonoxid (CO) mithilfe starker elektrischer Felder von Laserpulsen zu steuern und zu beobachten. Das Molekül Kohlenstoffmonoxid verfügt über 14 Elektronen. Mit zunehmender Anzahl von Elektronen in einem Molekül wird die Kontrolle über einzelne Elektronen erschwert, da ihre möglichen Energiezustände sehr dicht liegen.

Die Wissenschaftler verwendeten für ihre Versuche Laserpulse im nahen Infrarotbereich (740 nm) und von vier Femtosekunden Dauer. Die Kontrolle wurde experimentell über die asymmetrische Verteilung von C+ bzw. O+ Fragmenten nach dem Aufbrechen der Bindung nachgewiesen. Die Messung von C+ und O+ Fragmenten bedeutet eine dynamische Ladungsverschiebung entlang der Molekülachse in die eine bzw. andere Richtung, gesteuert durch den Laserpuls.

Sobald der Femtosekunden-Laserpuls mit den CO-Molekülen wechselwirkte, löste er ein Elektron aus dem Verbund heraus. Anschließend kollidierte das Elektron wieder mit dem Ion und gab dabei seine Energie ab. Der gesamte Vorgang dauerte etwa 1,7 Femtosekunden. "Bei der Rekollision wurde ein elektronisches Wellenpaket erzeugt, das nun eine gerichtete Bewegung der Elektronen entlang der Molekülachse induziert", berichtet Regina de Vivie-Riedle. "Durch die Anregung und die Wechselwirkung mit dem Rest des intensiven Laserpulses wird diese Elektronenbewegung an die Kernbewegung gekoppelt und liefert einen Beitrag zur beobachteten Asymmetrie", erklärt Matthias Kling.

Bei ihren Experimenten konnten die Physiker zudem die Elektronenstruktur und Form der äußersten zwei Orbitale des Kohlenstoffmonoxids durch die Ionisation mit den Lichtpulsen abbilden. Die extreme Kürze der Femtosekunden-Laserpulse ermöglichte es den Wissenschaftlern, die Vorgänge in den äußeren Orbitalen zu erkunden. Dabei zeigte sich, dass die Ionisation der Moleküle winkelabhängig zum Einfall des Lichtpulses stattfand. Diese Beobachtung steht im Einklang mit den theoretischen Berechnungen und liefert ebenfalls einen Beitrag zur beobachteten Asymmetrie. Die Wissenschaftler zeigten auch, dass die Asymmetrie der Ionisation von der Länge der Laserpulse abhängt.

Mit ihren Versuchen und Berechnungen haben die Garchinger und Münchener Forscher ein wichtiges Vorhaben umgesetzt, das sie sich im Exzellenzcluster "Munich Centre for Advanced Photonics" MAP vorgenommen haben. Ziel war es, in einem Vielelektronensystem Kontrolle über einzelne Elektronen zu erlangen und diesen Vorgang zu beobachten.

Elektronen sind in jeden lebenswichtigen, mikroskopischen Prozessen, genauso wie in der Technik allgegenwärtig. Ihre blitzschnellen Bewegungen innerhalb von Attosekunden bestimmen die biologischen und chemischen Prozesse, wie auch die Geschwindigkeit der Mikroprozessoren, das Herzstück von Computern.

Mit ihren Experimenten haben die Forscher somit einen weiteren, wichtigen Schritt getan, künftig chemische Reaktionen mit Licht zu beobachten und zu beeinflussen. In der sogenannten Lichtwellenelektronik führt die Grundlagenforschung hin zu ultraschnellen Rechenvorgängen in Computern im Bereich von wenigen Attosekunden. (thn)

Publikation:
I. Znakovskaya, P. von den Hoff, S. Zherebtsov, A. Wirth, O. Herrwerth, M.J.J. Vrakking, R. de Vivie-Riedle, M.F. Kling:
"Attosecond control of electron dynamics in carbon monoxide"
Physical Review Letters (4. September 2009)
Ansprechpartner:
Dr. Matthias Kling
Max-Planck-Institut für Quantenoptik, Garching
Junior Research Group "Attosecond Imaging"
Tel.: +49 89 / 32905 - 234
Fax: +49 89 / 32905 - 649
E-Mail: matthias.kling@mpq.mpg.de
Prof. Dr. Regina de Vivie-Riedle
Department Chemie und Biochemie
Ludwig-Maximilians-Universität München
Tel.: +49 89 / 2180 - 77533
Fax: +49 89 / 2180 - 77133
E-Mail: regina.de_vivie@cup.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.attoworld.de
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics