Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die schwache Seite des Protons

07.01.2013
Ein internationales Forschungsteam hat mit grosser Genauigkeit bestimmt, wie das Proton an der schwachen Wechselwirkung – eine der vier fundamentalen Kräfte der Natur – teilhat.

Die Ergebnisse bestätigen die theoretischen Voraussagen des Standardmodells der Teilchenphysik. In dem Experiment wurde beobachtet, mit welcher Wahrscheinlichkeit Myonen von Protonen eingefangen werden – ein Prozess, der von der schwachen Wechselwirkung bestimmt wird. Das Experiment wurde am Paul Scherrer Institut PSI durchgeführt, dem einzigen Ort weltweit, an dem genügend Myonen erzeugt werden, damit es in einer realistischen Zeit durchgeführt werden kann.


Experiment zum Myonenfang: Der PSI-Forscher Malte Hildebrandt arbeitet am Detektor, mit dem der Myonenfang am Proton gemessen wird. (Foto: Paul Scherrer Institut/Markus Fischer)
Foto: Paul Scherrer Institut/Markus Fischer

Die Forscher haben darauf geachtet, nicht nur die zahlreichen technischen Fehlerquellen auszuschliessen, sondern auch die „psychologischen“. Durch ein trickreiches Verfahren konnten sie ausschliessen, dass sie sich bei der Auswertung der Messergebnisse unbewusst von den bekannten theoretischen Voraussagen beeinflussen liessen. Die moderne Beschreibung des untersuchten Prozesses beruht auf Ideen, die vor 50 Jahren vom amerikanischen Physiker Y. Nambu entwickelt wurden, der 2008 dafür den Physiknobelpreis erhalten hat.

Erst jetzt war es möglich, die theoretischen Vorhersagen mit der notwendigen Genauigkeit zu überprüfen. Das Projekt zeigt, dass die Teilchenphysik neben Experimenten an den grossen Beschleunigeranlagen im Hochenergiebereich auch Untersuchungen mit hohen Teilchenzahlen braucht, für die das PSI die besten Voraussetzungen bietet. Das Ergebnis ist im Fachjournal Physical Review Letters erschienen. Das American Institute of Physics hat das Ergebnis mit einer Zusammenfassung auf der Webseite gewürdigt.

„Die schwache Wechselwirkung ist eine der vier Grundkräfte der Natur. Auch wenn sie nicht Teil unserer Alltagserfahrung ist, so ist sie doch an vielen wichtigen Vorgängen beteiligt wie der Energieerzeugung in der Sonne oder dem Zerfall von Teilchen“, führt Klaus Kirch, Leiter des Labors für Teilchenphysik am PSI, aus. Zudem ist sie unverzichtbarer Bestandteil des Standardmodells, der zurzeit besten Beschreibung der Welt der Elementarteilchen. Nun hat ein internationales Forscherteam aus den USA, Russland, Belgien und der Schweiz genau untersucht, wie das Proton an der schwachen Wechselwirkung teilhat.

Konkret hat man die „pseudoskalare Kopplung“ bestimmt, eine der Kopplungskonstanten, die festlegen, wie stark die schwache Wechselwirkung für das Proton ist. Das Proton ist einer der fundamentalen Bausteine der Materie, die uns umgibt. Selbst besteht es aber aus weiteren Unterteilchen, den Quarks und Gluonen. Daraus ergibt sich ein komplexes Verhalten des Protons, das mit derzeitigen Computern nicht exakt zu berechnen ist. Es gibt aber angenäherte – effektive – Rechenverfahren, deren Berechnungen sehr gut mit den Ergebnissen des Experiments übereinstimmen.

Myon testet schwache Kraft des Protons

In ihrem Experiment haben die Forschenden untersucht, mit welcher Wahrscheinlichkeit ein Proton ein Myon einfängt – eine Reaktion, für die die schwache Wechselwirkung verantwortlich ist. Das Myon ist dem Elektron sehr ähnlich, aber etwa 200-mal schwerer und instabil – es zerfällt in rund 2 Millionstelsekunden in andere Teilchen. Genau so wie das Elektron in einem normalen Wasserstoffatom kann auch das Myon an das Proton gebunden werden. Da es aber deutlich schwerer ist, ist es viel näher am Proton, und so kann es leichter zu einer Einfangreaktion kommen. Das Proton wandelt sich dabei in ein Neutron um und das Myon in ein Neutrino.

Den Weg der Myonen in 3-D beobachten – Messkammer am PSI entwickelt

„Das Herzstück des Experimentes war eine „Zeitprojektionskammer“, die in einem Behälter mit extrem reinem Wasserstoffgas eingebettet war. Mit dieser Kammer konnte die Spur jedes Myons dreidimensional bis zum Stopp aufgezeichnet werden – eine notwendige Grundbedingung für die hohe Präzision des Experiments. Die Kammer ist in einer Zusammenarbeit der Detektorengruppe und der technischen Dienste des PSI neu entwickelt worden“, erklärt Malte Hildebrand, Forscher am PSI und Leiter der Detektorengruppe.

Wie sieht man, dass ein Proton ein Myon eingefangen hat?

„In die Zeitprojektionskammer wurde jeweils ein einzelnes Myon hineingebracht“, sagt Bernhard Lauss, Experimentalphysiker am PSI. „Es verdrängte das Elektron aus einem der Wasserstoffatome und bewegte sich an dessen Stelle um das Proton – den Kern des Wasserstoffatoms.“ Nun kann das Myon zerfallen und ein Elektron aussenden, das von Detektoren registriert wird. Das ans Proton gebundene Myon kann aber auch vom Proton eingefangen werden und so auf noch einem weiteren Weg verschwinden. Wegen dieser zusätzlichen Möglichkeit “lebt“ ein Myon in der Nähe eines Protons im Mittel kürzer als ein freies Myon. Diese Lebensdauer bestimmt man, indem man die beim Zerfall entstehenden Elektronen beobachtet. Aus dem Vergleich dieser Lebensdauer mit derjenigen des freien Myons, die aus Messungen am PSI sehr genau bekannt ist, kann man die entsprechende Kopplungskonstante berechnen.

Experiment nur am PSI in einem Menschenleben möglich

„Ein solches Experiment kann zurzeit nur am PSI durchgeführt werden“, betont Peter Kammel, einer der zwei Sprecher des Experiments, der an der Universität von Washington in Seattle (USA) forscht. „Denn nur an der Beschleunigeranlage des PSI werden genug Myonen erzeugt, damit das Experiment in einer realistischen Zeit durchgeführt werden kann.“ Für das Projekt wurde eine neue Methode entwickelt, mit der die entstandenen Myonen und andere Teilchen direkt im Wasserstofftank sichtbar gemacht werden konnten. So konnte man den Myonenstrahl direkt nach Ankunft eines Myons blockieren, sodass sich stets nur ein einzelnes Myon im Experiment befand. Zugleich konnte sofort ein neues Teilchen nachgeliefert werden, sobald das vorherige zerfallen war. Dadurch ging keine Zeit zwischen den aufeinanderfolgenden Myonen verloren. Dennoch dauerte das Experiment mehrere Jahre.

Viele Teilchen statt hohe Energie

Das Experiment ist ein Beispiel für Forschung in der Teilchenphysik, bei der es darauf ankommt, viele Teilchen – hier Myonen – zur Verfügung zu haben, damit man eine Grösse besonders genau messen kann. Diese Arbeiten sind komplementär zu Experimenten an den grossen Beschleunigeranlagen, an denen man Teilchenstrahlen hoher Energie nutzt, mit denen man tief in das Innere anderer Teilchen schauen oder neue Teilchen mit hohen Massen erzeugen kann. In der Schweiz hat man mit dem PSI und dem CERN die weltbesten Anlagen für beide Arten von Experimenten.

„Psychologische“ Fehlerquelle ausgeschlossen

Lange bevor das Experiment durchgeführt war, hatten theoretische Physiker den Wert der Kopplungskonstante berechnet. So sahen die Experimentatoren die Gefahr, dass sie sich bei der Auswertung ihrer Messergebnisse unbewusst vom berechneten Wert beeinflussen lassen könnten. Um das zu verhindern, hatten sie die Ergebnisse um einen geheimen Faktor verändert. So konnten sie beim Auswerten nicht erkennen, wie nahe ihre Ergebnisse am vorausgesagten Wert waren. „Erst bei einem sehr spannenden Unblinding meeting – einem „Offenlegungstreffen“ – nach Abschluss der Auswertung wurde der geheime Wert offengelegt, sodass man das tatsächliche Ergebnis berechnen konnte“, erklärt Claude Petitjean, der zweite Sprecher des Experiments.

An dem Projekt waren beteiligt:
- USA: Universitäten von Washington-Seattle, Kentucky-Lexington, Illinois-Urbana-Champaign, Kalifornien-Berkeley, Regis-Denver, und Boston
- Russland: Petersburg Nuclear Physics Institute
- Belgien: Universität Louvain
- Schweiz: Paul Scherrer Institut PSI
Text: Paul Piwnicki
Über das PSI:
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.
Originalveröffentlichung:
Measurement of Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling g_P
V. A. Andreev et al. (MuCap Collaboration)
Phys. Rev. Lett. 110, 012504 (2013) DOI: 10.1103/PhysRevLett.110.012504 http://dx.doi.org/10.1103/PhysRevLett.110.012504
Kontakt:
Dr. Claude Petitjean, Labor für Teilchenphysik,
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,
Telefon: +41 56 310 3260; E-Mail: claude.petitjean@psi.ch [Deutsch, Englisch]
Dr. Malte Hildebrandt, Labor für Teilchenphysik,
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,
Telefon: +41 56 310 2145, E-Mail: malte.hildebrandt@psi.ch [Deutsch, Englisch]
Dr. Bernhard Lauss, Labor für Teilchenphysik,
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,
Telefon: +41 56 310 46 47, E-Mail: bernhard.lauss@psi.ch [Deutsch, Englisch]
Prof. Dr. Peter Kammel
University of Washington, Department of Physics
Center for Experimental Nuclear Physics and Astrophysics
Box 351560; Seattle, WA 98195-1560, USA
Telefon: +1 206 685-2401; E-Mail: pkammel@uw.edu [Deutsch, Englisch]

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch/ltp/laboratory-for-particle-physics
http://www.npl.washington.edu/muon
http://www.psi.ch/media/wie-stark-ist-die-schwache-kraft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle
16.10.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Kalte Moleküle auf Kollisionskurs
13.10.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungen

Tagung „Energieeffiziente Abluftreinigung“ zeigt, wie man durch Luftreinhaltemaßnahmen profitieren kann

13.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle

16.10.2017 | Physik Astronomie

Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt

16.10.2017 | Biowissenschaften Chemie

Gewebe mit Hilfe von Stammzellen regenerieren

16.10.2017 | Förderungen Preise