Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schummeln für die perfekte Simulation

18.01.2013
Physiker der Friedrich-Schiller-Universität Jena beschreiben das Innere von Neutronensternen

Unsere Erde stirbt – spätestens wenn die Sonne kollabiert. Das wird in etwa sieben Milliarden Jahren der Fall sein. Im All ist Sonnen- und Planetensterben aber alltäglich und unser Sonnensystem besteht zum Teil aus den Überresten.

Am Ende massereicher Sterne, wie es Sonnen sind, stehen oft Neutronensterne. Diese „sterbenden Sterne“ weisen u. a. eine sehr hohe Dichte auf, in der die Atome extrem komprimiert sind. Solche Neutronensterne sind nicht größer als Jena, aber schwerer als unsere Sonne, verdeutlicht der Physiker PD Dr. Axel Maas von der Universität Jena und ergänzt: „Die Atomkerne sitzen dicht an dicht.“ Gegenüber den Atomkernen von Wasser sind die Neutronenstern-Atomkerne so gepackt als stünde ein Bus nur mit Fahrer einem mit 1.000 Personen überfüllten Bus gegenüber. In diesen dicht gepackten Atomkernen wirken verschiedene sogenannte „Kernkräfte“. Sie halten den Neutronenstern zusammen und am „ewigen Leben“ – und seit 35 Jahren sind die starken Kern-Wechselwirkungen eine der größten Herausforderungen der theoretischen Physik.

Axel Maas ist es jetzt gemeinsam mit drei Kollegen von den Unis Jena und Darmstadt gelungen, die starken Kern-Wechselwirkungen erstmals so zu simulieren, dass die typischen Charakteristika eines Neutronensterns erhalten bleiben, aber eine Berechenbarkeit möglich wird. „Es ist die erste Theorie für eine so dichte Packung“, freut sich der Jenaer Physiker. Denn bisher brachen die Simulationen – auch auf den stärksten Rechnern – immer wieder zusammen, wenn man das Innere des Neutronensterns bestimmen wollte. Oder die simulierten Neutronensterne wurden immer kleiner, statt ihre Gestalt zu erhalten. „Diese Simulationen funktionierten nicht, weil es zu viele Atomkerne sind“, erläutert Maas das Problem, dessen Lösung die Physikwelt nun dank der Jenaer Berechnungen wesentlich näher gekommen ist. Dafür haben die Wissenschaftler am Frankfurter Loewe-Hochleistungs-Rechenzentrum so viel gerechnet, dass ein einzelner PC rund 2.500 Jahre dafür gebraucht hätte.

„Das ursprüngliche Problem haben auch wir nicht lösen können“, gibt Axel Maas zu, da Algorithmen diese Simulationen bisher nicht darstellen können. Doch der Jenaer Physiker, der seit 2007 an dieser Fragestellung forscht, und seine Kollegen haben „ein neues qualitatives Level erreicht“. Sie ermittelten in fast einjährigen Forschungen die „erste Theorie für eine so dichte Packung“, sagt Maas, und haben so Kernmaterie simulierbar gemacht. Die Charakteristika des Neutronensterns bleiben bei der Jenaer Methode erhalten, dennoch ist die Berechenbarkeit möglich.
Gelungen ist dieser wesentliche Fortschritt dem Team dadurch, dass es die Kernkräfte intelligent modifiziert und das Stapelproblem der Atome gelöst hat. Dass sie dabei „ein wenig geschummelt haben“, geben die Physiker unumwunden zu. Dennoch, da ist sich Maas sicher: „Wir haben den kleinstmöglichen Umweg gefunden“ und wissen nun, „was relevant ist in der Originalsimulation“.

Nun steht diese neue Überprüfbarkeitsmethode für zahlreiche Fragen und Theorien zu Neutronensternen und sehr dichten Atompackungen zur Verfügung. Maas weiß schon von ersten Forschergruppen, die mit den Jenaer Erkenntnissen arbeiten und darauf aufbauen wollen. Die beteiligten Wissenschaftler sind bereits dabei, die Simulation zu vergrößern und die Ergebnisse zu überprüfen.

Resultate, die es ermöglichen, dem Inneren von Neutronensternen eine Gestalt zu geben.
Bibliographische Angaben:
Axel Maas, Lorenz von Smekal, Björn Wellegehausen, Andreas Wipf: The phase diagram of a gauge theory with fermionic baryons, Physical Review D 86, 111901 (Rapid Communication) (2012). Online ist der Beitrag bereits frei zugänglich unter: http://arxiv.org/abs/1203.5653

Kontakt:
PD Dr. Axel Maas
Theoretisch-Physikalisches Institut der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947124
E-Mail: axel.maas[at]uni-jena.de

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de/
http://arxiv.org/abs/1203.5653

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics