Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durch Schütteln nicht gerührt: Fluktuationstheoreme gelten auch für offene quantenmechanische Systeme

02.06.2009
Augsburger NIM-Physiker schaffen mit entsprechendem Nachweis wichtige Grundlage für nanotechnologische Anwendungen in den Lebenswissenschaften und in der Informationsverarbeitung.

Den Augsburger Physikern Prof. Dr. Dr. h. c. mult. Peter Hänggi, Prof. Dr. Peter Talkner und Dr. Michele Campisi (Lehrstuhl für Theoretische Physik I) ist der Nachweis gelungen, dass Fluktuationstheoreme - das sind exakte mathematische Relationen, die es erlauben, von Messungen im Nicht-Gleichgewichtszustand eindeutig auf den Gleichgewichtszustand zu schließen - auch für offene quantenmechanische Systeme Gültigkeit haben.

Bisher war diese Gültigkeit nur für makroskopische Systeme belegt sowie - im Nanobereich - nur für geschlossene, von ihrer Umwelt also isolierte quantenmechanische Systeme. Die in den renommierten "Physical Review Letters" jetzt veröffentlichte Entdeckung der AG Hänggi erweitert schlagartig und entscheidend die Aussagekraft von Untersuchungen an winzigen Systemen, etwa an einzelnen Molekülen.

"Wenn wir ein Molekül, um es untersuchen zu können, schütteln und es sich dadurch insofern in keiner Weise 'gerührt' zeigt, als es es uns erlaubt, mit Fluktuationstheoremen auf seinen 'ungeschüttelten' Gleichgewichtszustand zu schließen, dann ist das von enormer Bedeutung für zukünftige Anwendungen in der Nanotechnologie und für das tiefere Verständnis biologischer Vorgänge, die quantenmechanische Aspekte aufweisen", erläutert Hänggi, der mit seiner Arbeitsgruppe im Rahmen der "Nanosystems Initiative Munich" (NIM) forscht. Dieses Exzellenzcluster beschäftigt sich mit Nanosystemen in Medizin und Informationsverarbeitung.

Messungen an einem physikalischen System verändern dieses zumeist, es gerät durch die Messung "aus dem Gleichgewicht". Das gilt zum Beispiel für elektronische Schaltungen. Ohne einen Strom durch sie zu schicken, kann man sie nicht untersuchen. Sie sind dann aber nicht mehr in Ruhe oder anders ausgedrückt: nicht mehr im Gleichgewichtszustand. Physiker können trotzdem für solche Systeme aus den Messungen im Nicht-Gleichgewichtszustand eindeutig auf das System im Gleichgewichtszustand schließen. Dazu verwenden sie spezielle mathematische Beziehungen, die "Fluktuationstheoreme".

Dass diese Fluktuationstheoreme für makroskopische Systeme gelten, ist schon seit Längerem bewiesen. Sind die untersuchten Systeme aber nur wenige Nanometer (Millionstel Millimeter) groß, dann gilt die herkömmliche "klassische" Physik nicht mehr. Es treten dann nämlich quantenmechanische Phänomene auf, etwa der Tunneleffekt, der es ermöglicht, dass Teilchen quasi "durch die Wand gehen". Für quantenmechanische Systeme konnte die Gültigkeit von Fluktuationstheoremen bisher nicht generell nachgewiesen werden. Lediglich für den rein theoretischen Spezialfall von quantenmechanischen Systemen, die keine Verbindung zu ihrer Umgebung haben, wurden sie als gültig betrachtet. Den Augsburger Physikern Peter Hänggi, Peter Talkner und Michele Campisi ist es nun gelungen, die Gültigkeit von Fluktuationstheoremen auch für "offene", also stark mit ihrer Umgebung wechselwirkende quantenmechanische Systeme nachzuweisen.

Dieser Nachweis schafft eine wichtige Grundlage für die Erforschung vielfältiger Systeme in der Größenordnung weniger Nanometer. Das betrifft so unterschiedliche Bereiche wie künstliche biologische Maschinen oder isolierte Einzelmoleküle in der medizinischen Diagnostik. Diese lassen sich zum Beispiel durch simples Schütteln mit "optischen Pinzetten" erforschen. Dass sie dabei aus dem Gleichgewicht gebracht werden, spielt dank der nunmehr nachgewiesenen Gültigkeit der Fluktuationstheoreme keine Rolle mehr. Aber auch die Entwicklung und Untersuchung quantenmechanischer Systeme zur Informationsverarbeitung - Stichwort Quantencomputer - kann von der Augsburger Entdeckung profitieren.

Der richtungweisende Nachweis der Gültigkeit von Fluktuationstheoremen auch bei offenen quantenmechanischen Systemen gelang Hänggi und seinen Kollegen bei ihren Forschungen im Rahmen des Exzellenzclusters "Nanosystems Initiative Munich" (NIM). Aufgabe und Ziel von NIM ist es, funktionale Nanostrukturen für Anwendungen in der Informationsverarbeitung und in den Lebenswissenschaften zu entwickeln und zu erforschen.

Veröffentlichung:

Fluctuation Theorem for Arbitrary Open Quantum Systems, Michele Campisi, Peter Talkner, and Peter Hänggi, Phys. Rev. Lett. 102, 210401 (2009) - Published May 26, 2009, http://physics.aps.org/pdf/10.1103/PhysRevLett.102.210401.pdf

Kontakt:

Prof. Dr. Dr. h. c. mult. Peter Hänggi
Lehrstuhl für Theoretische Physik I
Universität Augsburg
Telefon ++49(0)821-598-3249
hanggi@physik.uni-augsburg.de
Dr. Peter Sonntag
Nanosystems Initiative Munich (NIM)
Telefon ++49(0)89-2180-5091
peter.sonntag@lmu.de

Klaus P. Prem | idw
Weitere Informationen:
http://physics.aps.org/pdf/10.1103/PhysRevLett.102.210401.pdf
http://www.physik.uni-augsburg.de/theo1
http://www.nano-initiative-munich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blick ins Universum
15.01.2018 | Georg-August-Universität Göttingen

nachricht Extrem helle und schnelle Lichtemission
11.01.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Im Focus: Extrem helle und schnelle Lichtemission

Eine in den vergangenen Jahren intensiv untersuchte Art von Quantenpunkten kann Licht in allen Farben wiedergeben und ist sehr hell. Ein internationales Forscherteam mit Beteiligung von Wissenschaftlern der ETH Zürich hat nun herausgefunden, warum dem so ist. Die Quantenpunkte könnten dereinst in Leuchtdioden zum Einsatz kommen.

Ein internationales Team von Wissenschaftlern der ETH Zürich, von IBM Research Zurich, der Empa und von vier amerikanischen Forschungseinrichtungen hat die...

Im Focus: Paradigmenwechsel in Paris: Den Blick für den gesamten Laserprozess öffnen

Die neusten Trends und Innovationen bei der Laserbearbeitung von Composites hat das Fraunhofer-Institut für Lasertechnik ILT im März 2018 auf der JEC World Composite Show im Fokus: In Paris demonstrieren die Forscher auf dem Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau AZL unter anderem, wie sich Verbundwerkstoffe mit dem Laser fügen, strukturieren, schneiden und bohren lassen.

Keine andere Branche hat in der Öffentlichkeit für so viel Aufmerksamkeit für Verbundwerkstoffe gesorgt wie die Automobilindustrie, die neben der Luft- und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

Registrierung offen für Open Science Conference 2018 in Berlin

11.01.2018 | Veranstaltungen

Wie sieht die Bioökonomie der Zukunft aus?

10.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit mikroskopischen Luftblasen dämmen

15.01.2018 | Architektur Bauwesen

Feldarbeiten der größten Bodeninventur Deutschlands sind abgeschlossen

15.01.2018 | Agrar- Forstwissenschaften

Perowskit-Solarzellen: Es muss gar nicht perfekt sein

15.01.2018 | Materialwissenschaften