Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durch Schütteln nicht gerührt: Fluktuationstheoreme gelten auch für offene quantenmechanische Systeme

02.06.2009
Augsburger NIM-Physiker schaffen mit entsprechendem Nachweis wichtige Grundlage für nanotechnologische Anwendungen in den Lebenswissenschaften und in der Informationsverarbeitung.

Den Augsburger Physikern Prof. Dr. Dr. h. c. mult. Peter Hänggi, Prof. Dr. Peter Talkner und Dr. Michele Campisi (Lehrstuhl für Theoretische Physik I) ist der Nachweis gelungen, dass Fluktuationstheoreme - das sind exakte mathematische Relationen, die es erlauben, von Messungen im Nicht-Gleichgewichtszustand eindeutig auf den Gleichgewichtszustand zu schließen - auch für offene quantenmechanische Systeme Gültigkeit haben.

Bisher war diese Gültigkeit nur für makroskopische Systeme belegt sowie - im Nanobereich - nur für geschlossene, von ihrer Umwelt also isolierte quantenmechanische Systeme. Die in den renommierten "Physical Review Letters" jetzt veröffentlichte Entdeckung der AG Hänggi erweitert schlagartig und entscheidend die Aussagekraft von Untersuchungen an winzigen Systemen, etwa an einzelnen Molekülen.

"Wenn wir ein Molekül, um es untersuchen zu können, schütteln und es sich dadurch insofern in keiner Weise 'gerührt' zeigt, als es es uns erlaubt, mit Fluktuationstheoremen auf seinen 'ungeschüttelten' Gleichgewichtszustand zu schließen, dann ist das von enormer Bedeutung für zukünftige Anwendungen in der Nanotechnologie und für das tiefere Verständnis biologischer Vorgänge, die quantenmechanische Aspekte aufweisen", erläutert Hänggi, der mit seiner Arbeitsgruppe im Rahmen der "Nanosystems Initiative Munich" (NIM) forscht. Dieses Exzellenzcluster beschäftigt sich mit Nanosystemen in Medizin und Informationsverarbeitung.

Messungen an einem physikalischen System verändern dieses zumeist, es gerät durch die Messung "aus dem Gleichgewicht". Das gilt zum Beispiel für elektronische Schaltungen. Ohne einen Strom durch sie zu schicken, kann man sie nicht untersuchen. Sie sind dann aber nicht mehr in Ruhe oder anders ausgedrückt: nicht mehr im Gleichgewichtszustand. Physiker können trotzdem für solche Systeme aus den Messungen im Nicht-Gleichgewichtszustand eindeutig auf das System im Gleichgewichtszustand schließen. Dazu verwenden sie spezielle mathematische Beziehungen, die "Fluktuationstheoreme".

Dass diese Fluktuationstheoreme für makroskopische Systeme gelten, ist schon seit Längerem bewiesen. Sind die untersuchten Systeme aber nur wenige Nanometer (Millionstel Millimeter) groß, dann gilt die herkömmliche "klassische" Physik nicht mehr. Es treten dann nämlich quantenmechanische Phänomene auf, etwa der Tunneleffekt, der es ermöglicht, dass Teilchen quasi "durch die Wand gehen". Für quantenmechanische Systeme konnte die Gültigkeit von Fluktuationstheoremen bisher nicht generell nachgewiesen werden. Lediglich für den rein theoretischen Spezialfall von quantenmechanischen Systemen, die keine Verbindung zu ihrer Umgebung haben, wurden sie als gültig betrachtet. Den Augsburger Physikern Peter Hänggi, Peter Talkner und Michele Campisi ist es nun gelungen, die Gültigkeit von Fluktuationstheoremen auch für "offene", also stark mit ihrer Umgebung wechselwirkende quantenmechanische Systeme nachzuweisen.

Dieser Nachweis schafft eine wichtige Grundlage für die Erforschung vielfältiger Systeme in der Größenordnung weniger Nanometer. Das betrifft so unterschiedliche Bereiche wie künstliche biologische Maschinen oder isolierte Einzelmoleküle in der medizinischen Diagnostik. Diese lassen sich zum Beispiel durch simples Schütteln mit "optischen Pinzetten" erforschen. Dass sie dabei aus dem Gleichgewicht gebracht werden, spielt dank der nunmehr nachgewiesenen Gültigkeit der Fluktuationstheoreme keine Rolle mehr. Aber auch die Entwicklung und Untersuchung quantenmechanischer Systeme zur Informationsverarbeitung - Stichwort Quantencomputer - kann von der Augsburger Entdeckung profitieren.

Der richtungweisende Nachweis der Gültigkeit von Fluktuationstheoremen auch bei offenen quantenmechanischen Systemen gelang Hänggi und seinen Kollegen bei ihren Forschungen im Rahmen des Exzellenzclusters "Nanosystems Initiative Munich" (NIM). Aufgabe und Ziel von NIM ist es, funktionale Nanostrukturen für Anwendungen in der Informationsverarbeitung und in den Lebenswissenschaften zu entwickeln und zu erforschen.

Veröffentlichung:

Fluctuation Theorem for Arbitrary Open Quantum Systems, Michele Campisi, Peter Talkner, and Peter Hänggi, Phys. Rev. Lett. 102, 210401 (2009) - Published May 26, 2009, http://physics.aps.org/pdf/10.1103/PhysRevLett.102.210401.pdf

Kontakt:

Prof. Dr. Dr. h. c. mult. Peter Hänggi
Lehrstuhl für Theoretische Physik I
Universität Augsburg
Telefon ++49(0)821-598-3249
hanggi@physik.uni-augsburg.de
Dr. Peter Sonntag
Nanosystems Initiative Munich (NIM)
Telefon ++49(0)89-2180-5091
peter.sonntag@lmu.de

Klaus P. Prem | idw
Weitere Informationen:
http://physics.aps.org/pdf/10.1103/PhysRevLett.102.210401.pdf
http://www.physik.uni-augsburg.de/theo1
http://www.nano-initiative-munich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops