Schrödingers Katze im Elektronenmikroskop

Der Begriff „Schrödingers Katze“ aus der Quantenphysik steht sinnbildlich für die Möglichkeit eines Systems, sich gleichzeitig in zwei einander eigentlich ausschließenden Zuständen zu befinden. In einem reinen Gedankenexperiment wird die Katze mit den Regeln der Quantenmechanik in eine scheinbar absurde Überlagerung aus „zugleich“ tot und lebendig gebracht.

Wissenschaftler der Universität Göttingen haben nun auf mikroskopischer Ebene einen neuen Ansatz entwickelt, um reine Überlagerungs-Zustände freier Elektronen zu erzeugen. In diesen Zuständen bewegen sich die Elektronen „zugleich“ – im quantenmechanischen Sinn – bei einer festen Anzahl unterschiedlicher Geschwindigkeiten, einer in der klassischen Physik unmöglichen Situation. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Die Forschergruppe um Prof. Dr. Claus Ropers und Dr. Sascha Schäfer vom IV. Physikalischen Institut der Universität Göttingen hat für das Experiment ein ultraschnelles Elektronenmikroskop entwickelt, in dem an einer Nanostruktur kurze Pulse aus Elektronen mit intensiven Lichtfeldern wechselwirken.

„Wir beobachten, dass die Elektronen dabei Photonen aus dem Lichtfeld aufnehmen oder an dieses abgeben können, und dabei an Geschwindigkeit gewinnen oder verlieren“, erklärt Prof. Ropers.

„Die genaue Anzahl der ausgetauschten Photonen ist dabei quantenmechanisch unbestimmt, so dass sich die Elektronen in einer Überlagerung verschiedener Geschwindigkeiten befinden“, ergänzt Dr. Schäfer.

Der Nachweis der gezielten Quantenkontrolle dieser Zustände gelang über die Beobachtung sogenannter „Rabi-Oszillationen“: Hierbei oszilliert die Verteilung der Elektronen auf verschiedene Geschwindigkeiten, wenn die Lichtintensität variiert wird.

Auf der Grundlage ihrer Messungen sagen die Göttinger Forscher voraus, dass sich der gezielt manipulierte Elektronenpuls in eine Art zeitlichen Kamm umformt, dessen Zacken jeweils kürzer sind als hundert Attosekunden (eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde).

„Die Attosekunden-Kammstruktur müssen wir zukünftig noch experimentell zeigen. Unabhängig davon ermöglicht unser neu-entwickeltes ultraschnelles Elektronenmikroskop aber heute schon, viele dynamische Prozesse auf der mikroskopischen Skala anzuschauen“, sagt Armin Feist, Doktorand und Erstautor der Studie.

Originalveröffentlichung: Armin Feist et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature (2015). http://www.nature.com/nature/journal/v521/n7551/full/nature14463.html

Kontaktadressen:
Prof. Dr. Claus Ropers und Dr. Sascha Schäfer
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon: (0551) 39-4549 oder -4576
E-Mail: cropers@gwdg.de oder schaefer@ph4.physik.uni-goettingen.de
Internet: http://www.uni-goettingen.de/de/91116.html

http://www.nature.com/nature/journal/v521/n7551/full/nature14463.html

Media Contact

Thomas Richter idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer