Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schrödingers Katze im Elektronenmikroskop

18.05.2015

Göttinger Wissenschaftler erzeugen reine Überlagerungs-Zustände freier Elektronen

Der Begriff „Schrödingers Katze“ aus der Quantenphysik steht sinnbildlich für die Möglichkeit eines Systems, sich gleichzeitig in zwei einander eigentlich ausschließenden Zuständen zu befinden. In einem reinen Gedankenexperiment wird die Katze mit den Regeln der Quantenmechanik in eine scheinbar absurde Überlagerung aus „zugleich“ tot und lebendig gebracht.

Wissenschaftler der Universität Göttingen haben nun auf mikroskopischer Ebene einen neuen Ansatz entwickelt, um reine Überlagerungs-Zustände freier Elektronen zu erzeugen. In diesen Zuständen bewegen sich die Elektronen „zugleich“ – im quantenmechanischen Sinn – bei einer festen Anzahl unterschiedlicher Geschwindigkeiten, einer in der klassischen Physik unmöglichen Situation. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Die Forschergruppe um Prof. Dr. Claus Ropers und Dr. Sascha Schäfer vom IV. Physikalischen Institut der Universität Göttingen hat für das Experiment ein ultraschnelles Elektronenmikroskop entwickelt, in dem an einer Nanostruktur kurze Pulse aus Elektronen mit intensiven Lichtfeldern wechselwirken.

„Wir beobachten, dass die Elektronen dabei Photonen aus dem Lichtfeld aufnehmen oder an dieses abgeben können, und dabei an Geschwindigkeit gewinnen oder verlieren“, erklärt Prof. Ropers.

„Die genaue Anzahl der ausgetauschten Photonen ist dabei quantenmechanisch unbestimmt, so dass sich die Elektronen in einer Überlagerung verschiedener Geschwindigkeiten befinden“, ergänzt Dr. Schäfer.

Der Nachweis der gezielten Quantenkontrolle dieser Zustände gelang über die Beobachtung sogenannter „Rabi-Oszillationen“: Hierbei oszilliert die Verteilung der Elektronen auf verschiedene Geschwindigkeiten, wenn die Lichtintensität variiert wird.

Auf der Grundlage ihrer Messungen sagen die Göttinger Forscher voraus, dass sich der gezielt manipulierte Elektronenpuls in eine Art zeitlichen Kamm umformt, dessen Zacken jeweils kürzer sind als hundert Attosekunden (eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde).

„Die Attosekunden-Kammstruktur müssen wir zukünftig noch experimentell zeigen. Unabhängig davon ermöglicht unser neu-entwickeltes ultraschnelles Elektronenmikroskop aber heute schon, viele dynamische Prozesse auf der mikroskopischen Skala anzuschauen“, sagt Armin Feist, Doktorand und Erstautor der Studie.

Originalveröffentlichung: Armin Feist et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature (2015). http://www.nature.com/nature/journal/v521/n7551/full/nature14463.html

Kontaktadressen:
Prof. Dr. Claus Ropers und Dr. Sascha Schäfer
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon: (0551) 39-4549 oder -4576
E-Mail: cropers@gwdg.de oder schaefer@ph4.physik.uni-goettingen.de
Internet: http://www.uni-goettingen.de/de/91116.html

Weitere Informationen:

http://www.nature.com/nature/journal/v521/n7551/full/nature14463.html

Thomas Richter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie