Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schraubzwinge für das Quantenrauschen

14.04.2010
Münchner Physiker verschränken auf einem Mikrochip erstmals mehrere Atome und ermöglichen so genauere Messungen

Kompakt und präziser als die Quantenphysik zu erlauben scheint - so könnte sich die Atomuhr der Zukunft präsentieren. Ein Team um Physiker des Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität München hat einen Kniff gefunden, die Genauigkeit von Messinstrumenten, die mit Quantenteilchen auf einem Mikrochip arbeiten, zu erhöhen - und zwar über das Quantenlimit hinaus. Diese Grenze existiert, weil das Verhalten von Quantenteilchen der Wahrscheinlichkeit unterworfen ist. Das sich daraus ergebende Quantenrauschen haben die Forscher reduziert, indem sie Atome auf einem Mikrochip verschränkten. Dann bestimmt das Verhalten eines Atoms, was mit seinen verschränkten Partnern geschieht. Auf diese Weise lässt sich nicht nur die Präzision von chip-basierten Atomuhren, sondern auch von Atominterferometern erheblich steigern, die sich etwa für die Navigation verwenden lassen. (Nature, im Druck, DOI: 10.1038/nature08988)


Messen jenseits des Quantenlimits: Mit dem Atomchip an der Oberseite der würfelförmigen Vakuumkammer fangen die Münchner Physiker Rubidiumatome ein, die sie in mehreren Schritten verschränken. Auf diese Weise reduzieren sie das Quantenrauschen, das die Genauigkeit von Messungen begrenzt. Bild: Philipp Treutlein / MPI für Quantenoptik

Was Quantenphysiker Verschränkung nennen, ist geheimnisvoll, fremdartig - und nützlich. Befinden sich zwei Teilchen in einem verschränkten Zustand, verhalten sie sich nicht mehr wie zwei Individuen, sondern wie ein einziges Teilchen. Was immer das eine tut oder treibt - oder was mit ihm getrieben wird -, es beeinflusst im selben Moment das Verhalten des anderen, und zwar unabhängig davon, wie weit die Teilchen voneinander entfernt sind. Dieses Phänomen fasziniert Physiker nicht nur als Beispiel für die Eigenarten der Quantenwelt, sondern lässt sich auch technisch einsetzen, wie etwa in der Kommunikation, der Metrologie und Informationsverarbeitung.

Nun hat eine Forschergruppe um Theodor W. Hänsch und Philipp Treutlein am Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität München erstmals Teilchen auf einem Atom-Chip verschränkt. Mit solch einem mikrostrukturierten Chip lassen sich einzelne Atome oder auch Atomwölkchen einfangen und manipulieren. Unter anderem haben die Münchner Physiker damit bereits kompakte Atomuhren konstruiert, die für den portablen Einsatz geeignet sind. Und da sich die Teilchen auf solch einem Chip jetzt verschränken lassen, könnten diese Atomuhren künftig noch genauer ticken. Denn verschränkte Atomen ermöglichen es, das Quantenrauschen zu reduzieren.

Das Quantenrauschen ergibt sich aus der Unbestimmtheit, die das Verhalten von Atomen, Elektronen und Photonen bestimmt: Was dabei geschieht lässt sich nicht mit absoluter Sicherheit, sondern nur mit einer gewissen Wahrscheinlichkeit voraussagen. Eine Aussage darüber, wie sich ein quantenmechanisches System verhält kann also nur statistisch sein. Und der Wert einer quantenmechanischen Messung liegt innerhalb einer Bandbreite möglicher Ergebnisse. "Abweichungen von dem Mittelwert, also das Schwanken von Messung zu Messung, führen zu dem Quantenrauschen", erläutert Pascal Böhi, der als Doktorand an dem Projekt mitgearbeitet hat.

Spins, die gleichzeitig nach oben und unten zeigen

Die Verschränkung zu nutzen, um das Quantenrauschen zu reduzieren, stützt sich auf ein Konzept, das die theoretischen Physikerinnen Alice Sinatra und Li Yun vor zwei Jahren zusammen mit der Münchener Gruppe um Philipp Treutlein entwickelt haben. Dieses haben die Münchner Physiker jetzt experimentell umgesetzt. Dazu fangen sie zunächst eine Wolke von Rubidiumatomen auf dem Chip ein und kühlen sie auf weniger als ein Millionstel Grad über dem absoluten Nullpunkt. Bei diesen Temperaturen bildet sich ein neuer Materiezustand aus, ein sogenanntes Bose-Einstein-Kondensat, in dem sich alle Atome im gleichen quantenmechanischen Zustand befinden. Die Rubidiumatome können durch einen sogenannten Spin beschrieben werden, der zwei Einstellungen - aufwärts oder abwärts - annehmen kann.

Im Grundzustand ist der Spin von allen Atomen im Bose-Einstein-Kondensat nach unten gerichtet. Wegen der Unsicherheit quantenmechanischer Aussagen nimmt der Spin allerdings nicht exakt die Senkrechte ein, sondern kann auch Positionen darum herum besetzen. Einstellungen neben dem der Senkrechten werden allerdings immer unwahrscheinlicher je weiter entfernt sie davon liegen. Die Wahrscheinlichkeiten für die Positionen des Gesamtspins - der Summe aller einzelnen Spins - ergeben auf einer Kugelfläche am Südpol also einen Fleck mit diffusem Rand.

Mit einem kurzen Mikrowellenpuls drehen die Forscher den Gesamtspin nun in die Waagerechte, sprich: zum Äquator der Kugeloberfläche, wobei die fleckenförmige Verteilung der Spins erhalten bleibt. Doch die quantenmechanische Wirklichkeit ist noch komplizierter. Tatsächlich befinden sich alle Atome in einem Überlagerungszustand - einer Superposition - aus senkrecht nach unten und senkrecht nach oben weisenden Spinzuständen.

Verschränkt mit einer wählerischen Mikrowelle

Nun machen die Garchinger Physiker den entscheidenden Schritt: Sie verschränken die Rubidium-Atome, und zwar mit Hilfe eines zustandsabhängigen Potenzials, das die beiden Zustände räumlich voneinander trennt. Dazu senden die Forscher Mikrowellen auf einem Wellenleiter - ein Material, da für bestimmte Lichtfrequenzen durchlässig ist - durch ihren Chip. In der Umgebung dieses Wellenleiters entsteht ein elektromagnetisches Nahfeld, das mit zunehmendem Abstand vom Chip sehr rasch an Intensität verliert. Die Energie der Mikrowelle stellen sie so ein, dass sie ganz nah bei einer Energie liegt, die einen der beiden Spinzustände in einen anderen Zustand befördert. Weil die Energie der Mikrowelle aber nur beinahe mit der Energie des Übergangs übereinstimmt, findet der nicht statt. Vielmehr erhöht sich die Energie des Spinzustands - das mag das System nicht, weil in der Natur alles immer zu möglichst niedriger Energie strebt. Nun kommt zum Tragen, dass die Energie des Mikrowellenfeldes um den Wellenleiter schnell abklingt. Die Atome, denen eine Erhöhung ihrer Energie droht, weichen aus - und zwar in die Richtung, in der die Intensität der Mikrowelle verschwindet. Die Atome im anderen Spinzustand sind von dieser Energieerhöhung nicht bedroht; sie sehen den Mikrowellenpuls gar nicht und bewegen sich daher auch nicht.

Genaugenommen läuft auch dieser Prozess etwas anders ab. Denn die Spins der Atome zeigen gleichzeitig nach unten und oben, die Teilchen werden also sozusagen "von sich selbst getrennt"; sie werden vom Chip weggedrückt und gleichzeitig doch nicht. Genau diese Eigenschaft, dass Teilchen gleichzeitig hier und dort sein können, stellt eine der mathematischen Grundaussagen der Quantenphysik dar. Was diese Aussage für den tatsächlichen Aufenthaltsort der Teilchen bedeutet und wie sie sich mit unserer physikalischen Alltagserfahrung in Einklang bringen lässt, diskutieren auch Physiker immer noch.

"Anschaulich gesprochen bewirkt dieses Potenzial, dass nur Atome, die im gleichen Spinzustand sind, miteinander in Wechselwirkung treten, das heißt kollidieren können", erklärt Max F. Riedel, Doktorand am Münchner Atom-Chip Experiment: Es können also nur Atome zusammenstoßen, deren Spins entweder nach unten oder nach oben zeigen - Teilchen mit unterschiedlichen Spin-Einstellungen sehen sich dagegen einfach nicht. "Die zeitliche Entwicklung der Zustände eines Atoms hängt damit vom Zustand der anderen Atome ab. Das bedeutet, dass die Atome miteinander über ihren Spin verschränkt werden."

Ob die Atome zusammenstoßen und mit wem, ergibt sich also aus ihrem Spinzustand. Doch in welche Richtung der Spin zeigt, entscheidet sich erst im Moment der Messung. Die Entscheidung wiederum wird von allen anderen Atomen beeinflusst: Während unverschränkte Atome in ihrer Entscheidung für eine Spinrichtung mehr oder weniger frei sind, verlieren verschränkte Atome ihren unabhängigen Willen.

Höhere Genauigkeit, aber nur in einer Richtung

Zudem hat die Verschränkung zur Folge, dass der diffuse Fleck möglicher Spineinstellungen auseinander gezogen wird, weil sein oberer und unterer Teil in entgegengesetzte Richtungen wandern. Auf diese Weise wird er länger und schmaler. "Messungen mit Atomen etwa in einer Atomuhr lassen sich nun so vornehmen, dass nur die schmale Seite des Flecks der möglichen Spineinstellungen über den Wert einer Messung entscheidet", sagt Max Riedel. Die kleinste Zeiteinheit, mit der eine Atomuhr tickt, bildet ein der Umlauf des Gesamtspins auf einem Kreis. Wann der beendet ist lässt sich umso genauer messen, je geringer seine Unschärfe. "Wir quetschen das Rauschen in dieser Richtung unter seinen ursprünglichen Wert, auf Kosten des Rauschens in der entgegen gesetzten Richtung - denn Heisenbergs Unschärfrelation gilt immer noch. Jedoch interessiert uns diese andere Richtung für unsere Messung nicht, das ist der Trick." Aus der Stärke der "Quetschung" schließen die Physiker, dass sich in dem Wölkchen aus Rubidium-Atomen Cluster von jeweils mindestens vier miteinander verschränkten Atomen gebildet haben.

Mit solchen gequetschten Zuständen ließe sich nicht nur die Genauigkeit von Atomuhren deutlich erhöhen, auch hochempfindliche Atominterferometer könnten extrem schwacher Kraftfelder künftig noch präziser aufspüren. Solche Atominterferometer könnten etwa Drehbewegungen messen oder unterirdisch gelagerte Rohstoffe nachweisen. Zudem lässt sich die Technik vielleicht anwenden, um ein Quantengatter, einen zentralen Baustein von zukünftigen Quantencomputern, zu realisieren. Die Wissenschaftler erhoffen sich von ihren Experimenten ferner grundlegende Einblicke in die Mechanismen, die zu Quantenkorrelationen in Vielteilchensystemen führen.

Die hier beschriebenen Experimente wurden von der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters "Nanosystems Initiative Munich (NIM)" sowie von der Europäischen Union im Rahmen des Projekts "Atomic Quantum Technologies (AQUTE)" gefördert.

Originalveröffentlichung:

Max F. Riedel, Pascal Böhi, Yun Li, Theodor W. Hänsch, Alice Sinatra, und Philipp Treutlein
Atom chip based generation of entanglement for quantum metrology
Nature, im Druck; DOI: 10.1038/nature08988
Weitere Informationen erhalten Sie von:
Max F. Riedel
Ludwig-Maximilians-Universität München, München
Tel.: +49(0)89 2180-3703
E-Mail: max.riedel@physik.uni-muenchen.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie