Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die schnellste Stoppuhr der Welt – bald am CERN?

12.11.2012
An der TU Wien wurde eine Methode vorgeschlagen, millionenfach kürzere Lichtblitze zu vermessen als bisher – und zwar mit Geräten, die schon in wenigen Jahren am CERN aufgebaut werden sollen.

Bei der Kollision schwerer Atomkerne am CERN sollten sich die kürzesten Lichtblitze der Welt erzeugen lassen, das konnte ein Forschungsteam der TU Wien in Computersimulationen zeigen. Doch was nützen die kürzesten Lichtpulse, wenn sie zu schnell vorüber sind, um von heutigen Geräten überhaupt vermessen werden zu können?


Zwei Blei-Atome kollidieren. Dabei entsteht ein Quark-Gluon-Plasma, das ultrakurze Lichtpulse aussenden kann. F. Aigner / TU Wien

Nun wurde im Journal „Physical Review Letters“ eine Methode präsentiert, für die ultrakurzen Lichtpulse die genaueste Stoppuhr der Welt herzustellen – mit Hilfe eines Detektors, der im Jahr 2018 in die Anlage des LHC-Beschleunigers am CERN eingebaut werden soll.

Klein, kurz und heiß

Ultrakurze Lichtpulse werden verwendet, um physikalische Vorgänge zu untersuchen, die auf extrem kurzen Zeitskalen ablaufen. Mit speziellen Lasern sind heute Pulse in der Größenordnung von Attosekunden möglich – Milliardstel einer Milliardstelsekunde (10 hoch -18 Sekunden). „Bei Kern-Kollisionen in Teilchenbeschleunigern wie dem LHC am CERN oder am RHIC in den USA können aber Lichtpulse erzeugt werden, die noch einmal millionenfach kürzer sind“, sagt Andreas Ipp vom Institut für Theoretische Physik der TU Wien.

Beim Experiment ALICE am CERN werden Blei-Atomkerne fast auf Lichtgeschwindigkeit beschleunigt und dann zur Kollision gebracht. Aus Bestandteilen der Atomkerne und vielen weiteren Teilchen, die durch die Wucht des Aufpralls direkt beim Zusammenstoß erzeugt werden, entsteht ein Quark-Gluon-Plasma – ein Materiezustand, der so heiß ist, dass selbst Protonen und Neutronen aufgeschmolzen werden. Die elementaren Bestandteile der Materie – Quarks und Gluonen – bewegen sich wirr durcheinander. Dieses Quark-Gluon-Plasma existiert nur für die unvorstellbar kurze Zeitspanne von einigen Yoktosekunden (10 hoch -24 Sekunden).

Ideen aus der Astronomie

Im Quark-Gluon-Plasma nach einer Teilchenkollision können auch Lichtblitze entstehen, in denen wertvolle Information über das Plasma steckt. Doch herkömmliche Messmethoden sind viel zu langsam, um die Blitze auf der Yoktosekunden-Zeitskala aufzulösen. „Wir greifen daher auf den Hanbury Brown-Twiss-Effekt zurück, der ursprünglich für astronomische Messungen entwickelt wurde“, erklärt Andreas Ipp.

Bei Hanbury Brown-Twiss-Experimenten werden die Daten von zwei verschiedenen Licht-Detektoren miteinander verknüpft, daraus lässt sich beispielsweise der Durchmesser eines Sterns genau berechnen. „Anstatt räumliche Abstände zu studieren kann man diesen Effekt aber ebenso nutzen, um zeitliche Abstände zu vermessen“, sagt Peter Somkuti, Dissertant an der TU Wien, der einen großen Teil der Computersimulationen durchführte. Wie die Berechnungen nun zeigen, könnten die Yoktosekunden-Pulse durch ein Hanbury Brown-Twiss-Experiment aufgelöst werden. „Das wäre experimentell zwar recht aufwändig, aber es ist machbar“, sagt Ipp. Dafür würde man gar keine teuren zusätzlichen Detektoren benötigen: Die Messungen können mit dem „Forward Calorimeter“ durchgeführt werden, das 2018 am CERN in Betrieb gehen soll. Damit würde das ALICE-Experiment zur höchstauflösenden Stoppuhr der Welt werden.

Viele offene Fragen

Die Physik des Quark-Gluon-Plasmas ist nach wie vor voller ungelöster Rätsel: Es hat eine extrem niedrige Viskosität – ist also dünnflüssiger als alle Flüssigkeiten, die wir kennen. Außerdem strebt es extrem schnell in ein thermisches Gleichgewicht, auch wenn es anfangs in einem Zustand extremen Ungleichgewichts war. Die Vermessung der Lichtpulse aus dem Quark-Gluon-Plasma könnte wichtige neue Daten liefern, um diesen Materiezustand besser zu verstehen.

In Zukunft könnten die Lichtblitze vielleicht sogar verwendet werden, um Fragestellungen aus der Kernphysik zu untersuchen. „Experimente mit zwei Lichtpulsen hintereinander sind in der Quantenphysik sehr verbreitet“, sagt Andreas Ipp. „Der erste Lichtblitz ändert den Zustand des untersuchten Objektes, der zweite wird kurz darauf verwendet, um diese Veränderung zu messen.“ Mit Yoktosekunden-Lichtpulsen könnte man diese wohlerprobte Technik in Bereichen einsetzen, die der Forschung bisher noch völlig unzugänglich waren.

Rückfragehinweis:
Dr. Andreas Ipp
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstr. 8-10, 1040 Wien
T: +43 1 58801 13635
ipp@hep.itp.tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://prl.aps.org/abstract/PRL/v109/i19/e192301

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

nachricht Good vibrations feel the force
23.02.2018 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Molekularer Schraubstock“ ermöglicht neue chemische Reaktionen

23.02.2018 | Biowissenschaften Chemie

Internationale Forschungskooperation will Altersbedingte Makuladegeneration überwinden

23.02.2018 | Biowissenschaften Chemie

Workshop zu flexiblen Solarzellen und LEDs auf der Energiemesse „New Energy“

23.02.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics