Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der schnellste „Film“ der Welt

10.01.2011
Wissenschaftler entwickelten erstmals ein Verfahren, bei dem ultraschnelle Prozesse sichtbar werden / Publikation in „Nature Photonics“

Ein Bild sagt mehr als tausend Worte. Wenn es um dynamische Prozesse geht, ist es das Medium Film, das zum Erkenntnisgewinn führt. So wurde zum Beispiel im 19. Jahrhundert mit einer Sequenz von Blitzlichtfotos von Edward J. Muybridge geklärt, wie der genaue Bewegungsablauf eines Pferdes beim Galopp ist. Wichtig ist hierbei, dass die Bildfolge des Films in der Lage ist, die Prozessabläufe zeitlich aufzulösen.

Nun ist es Forschern der TU Berlin, des Helmholtz-Zentrums Berlin für Materialien und Energie und der Universität Münster unter Leitung von TU-Professor Dr. Stefan Eisebitt gelungen, mit Röntgenstrahlung eine ultraschnelle Bildsequenz aufzunehmen. Das Verfahren, das die Wissenschaftler in der Online-Ausgabe der Zeitschrift „Nature Photonics“ (http://dx.doi.org/10.1038/NPHOTON.2010.287) darstellen, erlaubt erstmals, mikro- und nanometerkleine Objekte zu zwei extrem kurz aufeinanderfolgenden Zeiten abzubilden.

Dazu wird ein spezielles holografisches Abbildungsverfahren für Röntgenstrahlen benutzt. „Die kurzwellige Röntgenstrahlung ermöglicht die Abbildung kleinster Strukturen“, erklärt Stefan Eisebitt, der am Institut für Optik und Atomare Physik der TU Berlin die Professur für Röntgenoptik und Nanometer-Optik innehat. „Mit unserem holografischen Verfahren können zwei extrem kurze Röntgenpulse zur Bildgebung benutzt werden.“ Dazu werden Pulse aus dem Röntgenlaser „FLASH“ bei DESY in Hamburg zunächst in zwei separate Lichtblitze „zerschnitten“. Diese treffen dann zeitlich versetzt das abzubildende Objekt – im Falle der Berliner Forscher das Brandenburger Tor im Mikroformat, das als Demonstrationsobjekt diente. Eine spezielle holografische Abbildung erlaubt es nun, die von beiden Pulsen erzeugten Bilder überlagert aufzunehmen und anschließend den verschiedenen Aufnahmezeiten zuzuordnen. Das Verfahren macht ultraschnelle Prozesse sichtbar.

So demonstrierten die Forscher die Methode, zwei eng aufeinanderfolgende „Schnappschüsse“ aufnehmen zu können, durch eine Bildsequenz mit nur 50 Femtosekunden Zeitabstand. Eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde. „Dieses Zeitintervall ist so kurz, dass selbst ein Lichtstrahl in dieser Zeit nur um die Breite eines Haares vorankommt“, erklärt Christian Günther vom Helmholtz-Zentrum Berlin. Diese extrem hohe Zeitauflösung gepaart mit der Möglichkeit, kleinste Objekte zu sehen, war die Motivation für die Entwicklung des Verfahrens.

„Das langfristige Ziel ist es, die Bewegung von Molekülen und Nanostrukturen verfolgen zu können, zum Beispiel während chemischer Reaktionen“, sagt Prof. Dr. Stefan Eisebitt. „Unsere Methode ist ein wichtiger Schritt hin zum ‘molekularen Film‘, der uns hilft, die fundamentalen Vorgänge bei physikalischen und chemischen Prozessen zu sehen und zu verstehen. Beispiele sind Änderungen der Form von Enzymen während der chemischen Reaktion oder ultraschnelle Magnetisierungsänderungen in neuartigen Datenspeichern.“

Das entwickelte Verfahren ist das Ergebnis der engen Zusammenarbeit der TU Berlin mit dem Helmholtz-Zentrum Berlin. Im vergangenen Jahr gründeten sie gemeinsam die Forschergruppe „Funktionale Nanomaterialien“, in deren Rahmen ein Großteil dieser Forschung durchgeführt wurde.

Weitere Informationen erteilt Ihnen gern: Prof. Dr. Stefan Eisebitt, Fachgebiet Röntgenoptik und Nanometer-Optik am Institut für Optik und Atomare Physik der TU Berlin, Hardenbergstr. 36, 10623 Berlin, Tel.: 030/314-25496, E-Mail: eisebitt@physik.tu-berlin.de

„EIN-Blick für Journalisten“ – Serviceangebot der TU Berlin für Medienvertreter:
Forschungsgeschichten, Expertendienst, Ideenpool, Fotogalerien unter:
http://www.pressestelle.tu-berlin.de/?id=4608

Stefanie Terp | idw
Weitere Informationen:
http://dx.doi.org/10.1038/NPHOTON.2010.287
http://www.tu-berlin.de/?id=95377

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops