Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelles Gold

15.04.2015

Ein neuer Mechanismus in der Laser-Plasma-Beschleunigung wurde für Schwerionen entdeckt, der Mittels Coulomb-Explosion eine signifikante Zunahme der kinetischen Ionenenergie bewirkt.

Wir alle sind aus Sternenstaub gemacht - dieses poetische Bild enthält eine Menge an (noch) unbekannter, spannender Physik, die der Dichter vielleicht eigentlich nicht erzählen wollte. Unter den Top 10 der ungeklärten Fragen der Physik, rangiert auch die Frage nach der Entstehung der schweren Elemente - Bestandteil des Sternenstaubs.


Der Laserpuls (1.3 J @ 35f) wird auf eine 14nm dicke Goldfolie fokussiert. Das Bild zeigt die maximale Ionenenergie in Abhängigkeit ihrer Ionisationsstufe - wie sie im Experiment gemessen wurden (pinke Quadrate). Das Bild zeigt darüber hinaus die gute Übereinstimmung mit unseren 2D-PIC Simulation (schwarze Quadrate) - wie auch einen Vergleich zwischen der Voraussage des alten theoretischen Models (schwarze Linie) - und dem von uns neu entwickeltem Model (blaue Linie). Quelle: MBI

Einen tiefen Einblick in das Innere der schweren Teilchen und ihrer Synthese, kann man bisher nur erhaschen, wenn sie bei extrem hohen Geschwindigkeiten aufeinanderprallen und man die dadurch entstandenen Fragmente ihrer Atomkerne analysiert. Nicht nur die Kernphysiker haben Interesse an schnellen Schwerionen sondern sie sind auch in der Materialforschung und der Medizinforschung gefragt.

Produziert werden diese Ionenstrahlen mit Teilchenbeschleunigern, die zu den größten und komplexesten Maschinen der Welt gehören. Das motiviert natürlich auch die Suche nach neuen technischen Konzepten oder ihre Verbesserung.

Ein alternativer Weg zur konventionellen Beschleunigertechnologie ist die Teilchenbeschleunigung durch ein Laser erzeugtes Plasma. Dazu benötigt man Laserintensitäten im sogenannten relativistischen Bereich, hier beschleunigt ein intensiver Laserpuls Elektronen bis fast auf Lichtgeschwindigkeit.

Die Laser-Plasma Interaktion ist dabei durch relativistische Effekte der Elektronen-Photonen Wechselwirkung bestimmt. Ein einzelner Laserpuls erzeugt in einem räumlich sehr begrenzten Plasma enorm hohe, gerichtete Feldstärken in der Größenordnung von bis zu einigen Megavolt pro Mikrometer. In diesen Feldern können geladene Teilchen auf einer relativ kurzen Wegstrecke auf hohe Geschwindigkeiten beschleunigt werden, so z.B. auch Goldionen.

Die Herausforderung bei der Schwerionenbeschleunigung ergibt sich direkt aus einem Grundprinzip: Ionen werden proportional zu ihrem Ladungs/Masse Z/A) beschleunigt, das zu höheren kinetische Energien (~MeV/u) für leichtere Elemente führt, da es schwierig ist hohe Ionisationstufen bei schweren Elementen zu erreichen.

Genau diesen Punkt konnten wir durch freistehende, ultradünne Goldfolien überwinden: Sie lieferten einen unerwarteten hohen Grad und eine spezifische Verteilung der Ionisation für das schwere Material (Z> 40 für Gold), so dass eine enorme, abstoßende Ladung wirkt und zur Beschleunigung der schweren Ionen über eine Coulomb Explosion führt.

Verglichen zu vorangegangenen Experimenten konnten wir kinetische Energien der Goldionen mit 1 MeV pro Nukleon mit einer Ordnung geringerer Laserenergie erzeugen.

Bisher übliche Laser Plasma Beschleunigungsmodelle nehmen eine gemittelte Ionisierung an, aus der eine fixierte räumlich uniforme Elektronendichte folgt. Unsere theoretischen Analysen der experimentellen Resultate (siehe Bild) zeigen eine schichtweise unterschiedliche Ionisierung der Targetfolie, wobei Atome mit der höchsten Ionisierung sich an den Rändern der Folien befinden. Dadurch wird dort eine extrem hohe Raumladung erzeugt - die abstoßend auf die stark positiv geladenen, schweren Ionen wirkt - und diese zusätzlich beschleunigt.

Extrapoliert man unsere Erkenntnisse in den Parameterbereich für ein richtiges Kollisionsexperiment mit schnellen schweren Ionen, werden Femtosekundenlaser mit Pulsenergien von 100 J benötigt.

Originalpublikation: Physical Review Letters

Vollständige Zitation:
J. Braenzel, A.A. Andreev, K. Platonov, M. Klingsporn, L. Ehrentraut, W. Sandner, M. Schnuerer, "Coulomb-Driven Energy Boost of Heavy Ions for Laser-Plasma Acceleration", Physical Review Letters 114, 124801 (2015)


Kontakt

Julia Braenzel
Dr. Matthias Schnuerer

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.124801

Saskia Donath | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise