Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelles Gold

15.04.2015

Ein neuer Mechanismus in der Laser-Plasma-Beschleunigung wurde für Schwerionen entdeckt, der Mittels Coulomb-Explosion eine signifikante Zunahme der kinetischen Ionenenergie bewirkt.

Wir alle sind aus Sternenstaub gemacht - dieses poetische Bild enthält eine Menge an (noch) unbekannter, spannender Physik, die der Dichter vielleicht eigentlich nicht erzählen wollte. Unter den Top 10 der ungeklärten Fragen der Physik, rangiert auch die Frage nach der Entstehung der schweren Elemente - Bestandteil des Sternenstaubs.


Der Laserpuls (1.3 J @ 35f) wird auf eine 14nm dicke Goldfolie fokussiert. Das Bild zeigt die maximale Ionenenergie in Abhängigkeit ihrer Ionisationsstufe - wie sie im Experiment gemessen wurden (pinke Quadrate). Das Bild zeigt darüber hinaus die gute Übereinstimmung mit unseren 2D-PIC Simulation (schwarze Quadrate) - wie auch einen Vergleich zwischen der Voraussage des alten theoretischen Models (schwarze Linie) - und dem von uns neu entwickeltem Model (blaue Linie). Quelle: MBI

Einen tiefen Einblick in das Innere der schweren Teilchen und ihrer Synthese, kann man bisher nur erhaschen, wenn sie bei extrem hohen Geschwindigkeiten aufeinanderprallen und man die dadurch entstandenen Fragmente ihrer Atomkerne analysiert. Nicht nur die Kernphysiker haben Interesse an schnellen Schwerionen sondern sie sind auch in der Materialforschung und der Medizinforschung gefragt.

Produziert werden diese Ionenstrahlen mit Teilchenbeschleunigern, die zu den größten und komplexesten Maschinen der Welt gehören. Das motiviert natürlich auch die Suche nach neuen technischen Konzepten oder ihre Verbesserung.

Ein alternativer Weg zur konventionellen Beschleunigertechnologie ist die Teilchenbeschleunigung durch ein Laser erzeugtes Plasma. Dazu benötigt man Laserintensitäten im sogenannten relativistischen Bereich, hier beschleunigt ein intensiver Laserpuls Elektronen bis fast auf Lichtgeschwindigkeit.

Die Laser-Plasma Interaktion ist dabei durch relativistische Effekte der Elektronen-Photonen Wechselwirkung bestimmt. Ein einzelner Laserpuls erzeugt in einem räumlich sehr begrenzten Plasma enorm hohe, gerichtete Feldstärken in der Größenordnung von bis zu einigen Megavolt pro Mikrometer. In diesen Feldern können geladene Teilchen auf einer relativ kurzen Wegstrecke auf hohe Geschwindigkeiten beschleunigt werden, so z.B. auch Goldionen.

Die Herausforderung bei der Schwerionenbeschleunigung ergibt sich direkt aus einem Grundprinzip: Ionen werden proportional zu ihrem Ladungs/Masse Z/A) beschleunigt, das zu höheren kinetische Energien (~MeV/u) für leichtere Elemente führt, da es schwierig ist hohe Ionisationstufen bei schweren Elementen zu erreichen.

Genau diesen Punkt konnten wir durch freistehende, ultradünne Goldfolien überwinden: Sie lieferten einen unerwarteten hohen Grad und eine spezifische Verteilung der Ionisation für das schwere Material (Z> 40 für Gold), so dass eine enorme, abstoßende Ladung wirkt und zur Beschleunigung der schweren Ionen über eine Coulomb Explosion führt.

Verglichen zu vorangegangenen Experimenten konnten wir kinetische Energien der Goldionen mit 1 MeV pro Nukleon mit einer Ordnung geringerer Laserenergie erzeugen.

Bisher übliche Laser Plasma Beschleunigungsmodelle nehmen eine gemittelte Ionisierung an, aus der eine fixierte räumlich uniforme Elektronendichte folgt. Unsere theoretischen Analysen der experimentellen Resultate (siehe Bild) zeigen eine schichtweise unterschiedliche Ionisierung der Targetfolie, wobei Atome mit der höchsten Ionisierung sich an den Rändern der Folien befinden. Dadurch wird dort eine extrem hohe Raumladung erzeugt - die abstoßend auf die stark positiv geladenen, schweren Ionen wirkt - und diese zusätzlich beschleunigt.

Extrapoliert man unsere Erkenntnisse in den Parameterbereich für ein richtiges Kollisionsexperiment mit schnellen schweren Ionen, werden Femtosekundenlaser mit Pulsenergien von 100 J benötigt.

Originalpublikation: Physical Review Letters

Vollständige Zitation:
J. Braenzel, A.A. Andreev, K. Platonov, M. Klingsporn, L. Ehrentraut, W. Sandner, M. Schnuerer, "Coulomb-Driven Energy Boost of Heavy Ions for Laser-Plasma Acceleration", Physical Review Letters 114, 124801 (2015)


Kontakt

Julia Braenzel
Dr. Matthias Schnuerer

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.124801

Saskia Donath | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics