Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelles Gold

15.04.2015

Ein neuer Mechanismus in der Laser-Plasma-Beschleunigung wurde für Schwerionen entdeckt, der Mittels Coulomb-Explosion eine signifikante Zunahme der kinetischen Ionenenergie bewirkt.

Wir alle sind aus Sternenstaub gemacht - dieses poetische Bild enthält eine Menge an (noch) unbekannter, spannender Physik, die der Dichter vielleicht eigentlich nicht erzählen wollte. Unter den Top 10 der ungeklärten Fragen der Physik, rangiert auch die Frage nach der Entstehung der schweren Elemente - Bestandteil des Sternenstaubs.


Der Laserpuls (1.3 J @ 35f) wird auf eine 14nm dicke Goldfolie fokussiert. Das Bild zeigt die maximale Ionenenergie in Abhängigkeit ihrer Ionisationsstufe - wie sie im Experiment gemessen wurden (pinke Quadrate). Das Bild zeigt darüber hinaus die gute Übereinstimmung mit unseren 2D-PIC Simulation (schwarze Quadrate) - wie auch einen Vergleich zwischen der Voraussage des alten theoretischen Models (schwarze Linie) - und dem von uns neu entwickeltem Model (blaue Linie). Quelle: MBI

Einen tiefen Einblick in das Innere der schweren Teilchen und ihrer Synthese, kann man bisher nur erhaschen, wenn sie bei extrem hohen Geschwindigkeiten aufeinanderprallen und man die dadurch entstandenen Fragmente ihrer Atomkerne analysiert. Nicht nur die Kernphysiker haben Interesse an schnellen Schwerionen sondern sie sind auch in der Materialforschung und der Medizinforschung gefragt.

Produziert werden diese Ionenstrahlen mit Teilchenbeschleunigern, die zu den größten und komplexesten Maschinen der Welt gehören. Das motiviert natürlich auch die Suche nach neuen technischen Konzepten oder ihre Verbesserung.

Ein alternativer Weg zur konventionellen Beschleunigertechnologie ist die Teilchenbeschleunigung durch ein Laser erzeugtes Plasma. Dazu benötigt man Laserintensitäten im sogenannten relativistischen Bereich, hier beschleunigt ein intensiver Laserpuls Elektronen bis fast auf Lichtgeschwindigkeit.

Die Laser-Plasma Interaktion ist dabei durch relativistische Effekte der Elektronen-Photonen Wechselwirkung bestimmt. Ein einzelner Laserpuls erzeugt in einem räumlich sehr begrenzten Plasma enorm hohe, gerichtete Feldstärken in der Größenordnung von bis zu einigen Megavolt pro Mikrometer. In diesen Feldern können geladene Teilchen auf einer relativ kurzen Wegstrecke auf hohe Geschwindigkeiten beschleunigt werden, so z.B. auch Goldionen.

Die Herausforderung bei der Schwerionenbeschleunigung ergibt sich direkt aus einem Grundprinzip: Ionen werden proportional zu ihrem Ladungs/Masse Z/A) beschleunigt, das zu höheren kinetische Energien (~MeV/u) für leichtere Elemente führt, da es schwierig ist hohe Ionisationstufen bei schweren Elementen zu erreichen.

Genau diesen Punkt konnten wir durch freistehende, ultradünne Goldfolien überwinden: Sie lieferten einen unerwarteten hohen Grad und eine spezifische Verteilung der Ionisation für das schwere Material (Z> 40 für Gold), so dass eine enorme, abstoßende Ladung wirkt und zur Beschleunigung der schweren Ionen über eine Coulomb Explosion führt.

Verglichen zu vorangegangenen Experimenten konnten wir kinetische Energien der Goldionen mit 1 MeV pro Nukleon mit einer Ordnung geringerer Laserenergie erzeugen.

Bisher übliche Laser Plasma Beschleunigungsmodelle nehmen eine gemittelte Ionisierung an, aus der eine fixierte räumlich uniforme Elektronendichte folgt. Unsere theoretischen Analysen der experimentellen Resultate (siehe Bild) zeigen eine schichtweise unterschiedliche Ionisierung der Targetfolie, wobei Atome mit der höchsten Ionisierung sich an den Rändern der Folien befinden. Dadurch wird dort eine extrem hohe Raumladung erzeugt - die abstoßend auf die stark positiv geladenen, schweren Ionen wirkt - und diese zusätzlich beschleunigt.

Extrapoliert man unsere Erkenntnisse in den Parameterbereich für ein richtiges Kollisionsexperiment mit schnellen schweren Ionen, werden Femtosekundenlaser mit Pulsenergien von 100 J benötigt.

Originalpublikation: Physical Review Letters

Vollständige Zitation:
J. Braenzel, A.A. Andreev, K. Platonov, M. Klingsporn, L. Ehrentraut, W. Sandner, M. Schnuerer, "Coulomb-Driven Energy Boost of Heavy Ions for Laser-Plasma Acceleration", Physical Review Letters 114, 124801 (2015)


Kontakt

Julia Braenzel
Dr. Matthias Schnuerer

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.124801

Saskia Donath | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit