Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller speichern auf runden Oberflächen

09.09.2008
Professur Oberflächen- und Grenzflächenphysik der TU Chemnitz forscht in einem bilateralen Projekt gemeinsam mit der University of California, Santa Cruz

Bis zu zehnmal schneller könnten magnetische Datenspeicher schalten, wenn sie aus einer Grundsubstanz aufgebaut werden, die nicht wie bisher aus flachen, sondern aus runden Bauteilen besteht - das zumindest hoffen Wissenschaftler um Prof. Dr. Manfred Albrecht, Inhaber der Professur Oberflächen- und Grenzflächenphysik an der TU Chemnitz.

In einem bilateralen Projekt forschen sie gemeinsam mit Physikern der US-amerikanischen University of California Santa Cruz. "Die Kollegen aus Santa Cruz bringen die Expertise für die Analytik mit und wir steuern das Know-how bei, um die zu untersuchenden Systeme zu produzieren", erklärt Albrecht die Synergie. Erforscht werden Systeme, die aus winzigen Glaskugeln aufgebaut sind, welche mit einer Eisen-Platin-Legierung beschichtet sind. "Legierungen aus Eisen und Platin werden mit großer Sicherheit in kommenden Generationen von Speichermedien eine entscheidende Rolle spielen", schätzt Albrecht ein und erklärt: "Sie besitzen eine hohe thermische Stabilität, die dafür sorgt, dass die Daten lange erhalten bleiben können."

Vor allem geht es in dem Projekt mit dem Titel "Dynamic Properties of Curved Multilayer Nanomagnets" um die Untersuchung der so genannten Spindynamik, der Drehbewegungen kleinster magnetischer Bereiche. Geforscht wird auf der Nanometer-Skala, also mit Teilchen im Größenbereich eines Millionstel eines Millimeters. Ein Nanometer entspricht in einem Stück Metall ungefähr einer Strecke von vier benachbarten Atomen und ist etwa 20.000-mal dünner als ein menschliches Haar.

"Unsere Kollegen in Santa Cruz, die Forschergruppe rund um Prof. Dr. Holger Schmidt, sind ausgewiesene Experten auf dem Gebiet der Spindynamik", sagt Albrecht. Mit Hilfe von ultrakurzen Laserpulsen werden die US-amerikanischen Wissenschaftler die Systeme untersuchen, die in den Laboren der TU Chemnitz entwickelt und produziert werden. "Es wäre schon ein kleiner Durchbruch, wenn wir tatsächlich eine Beschleunigung um den Faktor zehn bei der Datenspeicherung nachweisen könnten", schätzt Albrecht ein. Erreicht werden könnte diese Beschleunigung dadurch, dass die Nord-Südpol-Achsen von Magneten auf gewölbten Oberflächen in unterschiedlichen Winkeln stehen und dadurch schneller ummagnetisiert werden können, als wenn sie ausschließlich senkrecht stehen - wie es bei den bisher verwendeten flachen Oberflächen einer Festplatte der Fall ist.

Ein Datenspeicher, der sich aus Kugeln zusammensetzt, hätte auch Vorteile in der Produktion. "In der Herstellung positionieren sich die kugelförmigen Partikel in optimaler Weise - das macht die Natur ganz von alleine, was natürlich eine preiswerte Möglichkeit ist", so Albrecht.

Wie schnell können die Materialien tatsächlich ummagnetisiert werden, wie schnell schalten sie also zwischen den für die Datenspeicherung wichtigen Signalen "Null" und "Eins"? Welchen Einfluss hat die Partikelgröße? Und welche Rolle spielen die Nachbarn - schließlich kommt es zwischen den Partikeln auch zu magnetischen Anziehungs- und Abstoßungskräften? Diesen Fragen gehen die Forscher nach.

Das Gemeinschaftsprojekt wird für drei Jahre mit 310.000 Euro von der Deutschen Forschungsgemeinschaft (DFG) und der National Science Foundation (NSF) der USA im Rahmen des Programms "Materials World Network" gefördert. Neben der Forschung ist ein verstärkter Austausch zwischen der TU Chemnitz und der University of California Santa Cruz Ziel des Projektes. "Es ist beispielsweise ein Workshop in Chemnitz geplant und es wird einen intensiven Studentenaustausch geben. Ein guter Teil der Fördermittel ist für Forschungsaufenthalte vorgesehen", so Albrecht.

Weitere Informationen erteilt:
Prof. Dr. Manfred Albrecht,
Telefon 0371 531-36831,
E-Mail manfred.albrecht@physik.tu-chemnitz.de.

Katharina Thehos | TU Chemnitz
Weitere Informationen:
http://www.tu-chemnitz.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher verwandeln Diamant in Graphit
24.11.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen
24.11.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie