Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller Rechnen mit kollektiven Quanten-Bits

08.02.2013
Physiker aus Harvard und Hannover entwickeln neues Verfahren für Quantencomputer

Quantencomputer könnten bestimmte Aufgaben deutlich schneller lösen als klassische Computer, ihre Realisierung in einem für praktische Anwendungen relevanten Umfang gestaltet sich jedoch schwierig.

Dies könnte sich nun mit einem von Physikern der Leibniz Universität Hannover entwickelten Verfahren für festkörperbasierte Quantencomputer ändern. Ihre Ergebnisse präsentieren die Wissenschaftler um Dr. Hendrik Weimer vom Institut für Theoretische Physik jetzt in der Fachzeitschrift Physical Review Letters.

Während die Kontrolle von einzelnen Quanten-Bits („Qubits“) inzwischen mit großer Präzision möglich ist, stellt die Realisiserung größerer Netzwerke mit einer Vielzahl von Qubits eine bisher ungelöste Herausforderung dar. Dies trifft insbesondere auf Quantencomputer basierend auf magnetischen Defekten in Festkörpern zu, da die magnetische Wechselwirkung zwischen den einzelnen Qubits zu schwach ist.

Hier konnten die Physiker nun zeigen, dass die Bündelung von circa 100 Defekten in ein einzelnes kollektives Qubit diese Beschränkung aufheben kann. Bei der korrekten Wahl eines externen Magnetfelds verlieren die magnetischen Eigenschaften der einzelnen Defekte ihre individuelle Natur und verhalten sich als ununterscheidbare Einheit. Solche kollektiven Quantensysteme sind für stark erhöhte Wechselwirkungseigenschaften bekannt und ermöglichen dadurch schnellere Operationen in einem Quantencomputer.

Während die vorgestellte Methode für eine Vielzahl von festkörperbasierten Qubits anwendbar ist, konnten die Wissenschaftler durch eine detaillierte Simulation für Stickstoff-Fehlstellen-Zentren in Diamant nachweisen, dass damit deutlich größere Quantennetzwerke als bisher realisiert werden können. Hendrik Weimer erläutert: „Bereits 50 kollektive Qubits reichen für unmittelbare Anwendungen in der Simulation von stark korrelierten Quantensystemen.“

Hendrik Weimer, Norman Y. Yao, Mikhail D. Lukin. Collectively Enhanced Interactions in Solid-State Spin Qubits, Physical Review Letters 110, 067601 (2013).
http://prl.aps.org/abstract/PRL/v110/i6/e067601

Hinweis an die Redaktion:
Für weitere Informationen steht Ihnen Dr. Hendrik Weimer, Institut für Theoretische Physik, unter Telefon 0511 762 4836 oder per E-Mail unter hweimer@itp.uni-hannover.de gern zur Verfügung.

Mechtild Freiin v. Münchhausen | idw
Weitere Informationen:
http://www.uni-hannover.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics