Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller Detektor für riesigen Wellenlängenbereich

31.07.2013
Freie-Elektronen-Laser sind äußerst vielseitige Forschungsgeräte, denn mit ihren intensiven und superkurzen Lichtblitzen kann man neue Materialien oder auch biologische Moleküle besonders gut untersuchen und so bisher unbekannte Effekte beobachten.

Für gepulste Laser im fernen Infrarot, dem sogenannten Terahertz-Bereich, haben Wissenschaftler im Helmholtz-Zentrum Dresden-Rossendorf (HZDR) einen robusten und schnellen Detektor konzipiert, der mit hoher Genauigkeit die Ankunft eines Terahertz-Pulses messen kann. Mit den in der Fachzeitschrift „Applied Physics Letters“ (DOI: 10.1002/chem.201204101) publizierten Ergebnissen liefern die Forscher zugleich eine Bauanleitung für ihren Detektor.


Physiker Dr. Wolfgang Seidel bei Einstellungsarbeiten an einem der beiden Freie-Elektronen-Laser im Helmholtz-Zentrum Dresden-Rossendorf. Foto: HZDR/Frank Bierstedt

Jeder einzelne Puls vom Freie-Elektronen-Laser (FEL) im Helmholtz-Zentrum Dresden-Rossendorf besteht aus unzähligen Lichtteilchen. Für viele Experimente ist es extrem wichtig, die genaue Ankunftszeit dieser Lichtpulse zu kennen. Die Zeitdauer zwischen den nur zehn Pikosekunden, also zehn billionstel Sekunden, kurzen Lichtblitzen beträgt allerdings lange 77.000 Pikosekunden. Auf räumliche Größenvorstellungen übertragen entspräche die Distanz zwischen zwei Pulsen knapp acht Kilometer. Diese Strecke gilt es zu durchsuchen, um die Ankunftszeit eines Lichtpulses, der in diesem Vergleich gerademal einen Meter lang wäre, zu bestimmen.

Gemeinsam mit Wissenschaftlern der Universität Regensburg gelang es dem Physiker Martin Mittendorff und seinen Kollegen vom HZDR, einen zuverlässigen Detektor für die Zeitmessung an Freie-Elektronen-Lasern im Terahertz-Bereich zu entwickeln, zu bauen und zu testen. Diese Technik kann an allen vergleichbaren FELs eingesetzt werden. Sie basiert auf einer winzig kleinen Flocke aus Graphen, einem Material, um das ein regelrechter Forschungsboom entstanden ist seit seine Entdeckung im Jahr 2010 mit einem Nobelpreis belohnt wurde.

Die Liste der Anwendungen des für neue Technologien wie geschaffenen Werkstoffs – einer Schicht aus Kohlenstoff, die genau eine Atomlage dick ist – wird dabei immer länger. Graphen ist zugleich dünn, transparent und stabil, es kann Licht im unsichtbaren Infrarotbereich absorbieren, und die Elektronen können sich sehr schnell durch das Material bewegen.

„Die Eigenschaft des Graphens, Lichtteilchen in einem sehr großen Wellenlängenbereich zu absorbieren, war die Voraussetzung für unseren robusten und auch bei Zimmertemperatur einsatzbereiten Detektor. Die große Beweglichkeit der Elektronen im Graphen ermöglicht dabei die hohe Schnelligkeit“, erläutert Martin Mittendorff vom HZDR. Um die Lichtpulse auf die kaum bleistiftspitzengroße Flocke zu lenken, wird zudem eine spezielle Antenne benötigt. Nachdem das Detektor-Konzept feststand, fertigte der Physiker Josef Kamann in der Arbeitsgruppe von Professor Dieter Weiss an der Universität Regensburg den ersten Prototypen. Bei allen Tests am Freie-Elektronen-Laser des HZDR erwies sich der Detektor als schnell und beständig.

Bislang war die Abstimmung der Laserpulse mit Schwierigkeiten verbunden, da es keine einfachen und schnellen Detektoren für FEL-Strahlung im Terahertz-Bereich gab. Insbesondere sind die meisten schnellen Detektoren auf einen engen Wellenlängenbereich limitiert und nicht, wie der Detektor auf Graphen-Basis aus dem HZDR, für große Teile des mittleren und fernen Infrarotbereichs einsetzbar. Martin Mittendorff und seine Kollegen arbeiten nun an einer Weiterentwicklung ihres Systems, das einen noch größeren Wellenlängenbereich abdecken soll, angefangen von ultraviolettem Licht bis hin zum fernen Infrarot.

Vor allem bei sogenannten Pump-Probe-Experimenten profitieren die Forscher enorm von dem neuen Gerät, denn hierfür benötigen sie Licht aus zwei unterschiedlichen Laserquellen, die sie supergenau aufeinander abstimmen müssen. Soll beispielsweise ein vielversprechender Halbleiter für optoelektronische Anwendungen optimiert werden, so kann man die Elektronen darin mit einem ersten Laser anregen und danach mit einem zweiten Laser beobachten, wie schnell sie aus dem angeregten Energiezustand in den Ursprungszustand zurückkehren. Vielfältige Einsatzmöglichkeiten für das neu entwickelte Detektorsystem bietet das ELBE-Zentrum für Hochleistungs-Strahlenquellen in Rossendorf, denn hier sind unter einem Dach zwei Freie-Elektronen-Laser (FELBE) mit Terahertz- bzw. Infrarotstrahlung sowie die neuartige TELBE-Quelle vereint, die den im HZDR verfügbaren Spektralbereich der Terahertz-Strahlung in den nächsten Jahren erheblich erweitern soll.

Die Forschungsarbeiten im HZDR und an der Universität Regensburg werden unter anderem im Schwerpunktprogramm „Graphen“ der Deutschen Forschungsgemeinschaft gefördert.

Publikation:
M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss u.a., Utrafast graphene-based broadband THz detector, in: Applied Physics Letters 103, 021113 (2013), DOI-Link: 10.1063/1.4813621
Weitere Informationen:
_Martin Mittendorff
Institut für Ionenstrahlphysik und Materialforschung im HZDR
Tel.: 0351 260 - 3522 | m.mittendorff@hzdr.de
_Josef Kamann
Institut für Experimentelle und Angewandte Physik an der Universität Regensburg
Tel.: 0941 943 - 2186 | josef.kamann@physik.uni-regensburg.de
Medienkontakte:
_Dr. Christine Bohnet, Pressesprecherin
Tel. 0351 260 - 2450 oder 0160 969 288 56 | c.bohnet@hzdr.de |
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden
_Alexander Schlaak, Pressereferent
Universität Regensburg | Universitätsstraße 31 | 93053 Regensburg
Tel.: 0941 943 - 5566 | Alexander.Schlaak@uni-regensburg.de |
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

Zur Beantwortung dieser wissenschaftlichen Fragen werden Großgeräte mit einzigartigen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon ca. 450 Wissenschaftler inklusive 160 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise