Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller Detektor für riesigen Wellenlängenbereich

31.07.2013
Freie-Elektronen-Laser sind äußerst vielseitige Forschungsgeräte, denn mit ihren intensiven und superkurzen Lichtblitzen kann man neue Materialien oder auch biologische Moleküle besonders gut untersuchen und so bisher unbekannte Effekte beobachten.

Für gepulste Laser im fernen Infrarot, dem sogenannten Terahertz-Bereich, haben Wissenschaftler im Helmholtz-Zentrum Dresden-Rossendorf (HZDR) einen robusten und schnellen Detektor konzipiert, der mit hoher Genauigkeit die Ankunft eines Terahertz-Pulses messen kann. Mit den in der Fachzeitschrift „Applied Physics Letters“ (DOI: 10.1002/chem.201204101) publizierten Ergebnissen liefern die Forscher zugleich eine Bauanleitung für ihren Detektor.


Physiker Dr. Wolfgang Seidel bei Einstellungsarbeiten an einem der beiden Freie-Elektronen-Laser im Helmholtz-Zentrum Dresden-Rossendorf. Foto: HZDR/Frank Bierstedt

Jeder einzelne Puls vom Freie-Elektronen-Laser (FEL) im Helmholtz-Zentrum Dresden-Rossendorf besteht aus unzähligen Lichtteilchen. Für viele Experimente ist es extrem wichtig, die genaue Ankunftszeit dieser Lichtpulse zu kennen. Die Zeitdauer zwischen den nur zehn Pikosekunden, also zehn billionstel Sekunden, kurzen Lichtblitzen beträgt allerdings lange 77.000 Pikosekunden. Auf räumliche Größenvorstellungen übertragen entspräche die Distanz zwischen zwei Pulsen knapp acht Kilometer. Diese Strecke gilt es zu durchsuchen, um die Ankunftszeit eines Lichtpulses, der in diesem Vergleich gerademal einen Meter lang wäre, zu bestimmen.

Gemeinsam mit Wissenschaftlern der Universität Regensburg gelang es dem Physiker Martin Mittendorff und seinen Kollegen vom HZDR, einen zuverlässigen Detektor für die Zeitmessung an Freie-Elektronen-Lasern im Terahertz-Bereich zu entwickeln, zu bauen und zu testen. Diese Technik kann an allen vergleichbaren FELs eingesetzt werden. Sie basiert auf einer winzig kleinen Flocke aus Graphen, einem Material, um das ein regelrechter Forschungsboom entstanden ist seit seine Entdeckung im Jahr 2010 mit einem Nobelpreis belohnt wurde.

Die Liste der Anwendungen des für neue Technologien wie geschaffenen Werkstoffs – einer Schicht aus Kohlenstoff, die genau eine Atomlage dick ist – wird dabei immer länger. Graphen ist zugleich dünn, transparent und stabil, es kann Licht im unsichtbaren Infrarotbereich absorbieren, und die Elektronen können sich sehr schnell durch das Material bewegen.

„Die Eigenschaft des Graphens, Lichtteilchen in einem sehr großen Wellenlängenbereich zu absorbieren, war die Voraussetzung für unseren robusten und auch bei Zimmertemperatur einsatzbereiten Detektor. Die große Beweglichkeit der Elektronen im Graphen ermöglicht dabei die hohe Schnelligkeit“, erläutert Martin Mittendorff vom HZDR. Um die Lichtpulse auf die kaum bleistiftspitzengroße Flocke zu lenken, wird zudem eine spezielle Antenne benötigt. Nachdem das Detektor-Konzept feststand, fertigte der Physiker Josef Kamann in der Arbeitsgruppe von Professor Dieter Weiss an der Universität Regensburg den ersten Prototypen. Bei allen Tests am Freie-Elektronen-Laser des HZDR erwies sich der Detektor als schnell und beständig.

Bislang war die Abstimmung der Laserpulse mit Schwierigkeiten verbunden, da es keine einfachen und schnellen Detektoren für FEL-Strahlung im Terahertz-Bereich gab. Insbesondere sind die meisten schnellen Detektoren auf einen engen Wellenlängenbereich limitiert und nicht, wie der Detektor auf Graphen-Basis aus dem HZDR, für große Teile des mittleren und fernen Infrarotbereichs einsetzbar. Martin Mittendorff und seine Kollegen arbeiten nun an einer Weiterentwicklung ihres Systems, das einen noch größeren Wellenlängenbereich abdecken soll, angefangen von ultraviolettem Licht bis hin zum fernen Infrarot.

Vor allem bei sogenannten Pump-Probe-Experimenten profitieren die Forscher enorm von dem neuen Gerät, denn hierfür benötigen sie Licht aus zwei unterschiedlichen Laserquellen, die sie supergenau aufeinander abstimmen müssen. Soll beispielsweise ein vielversprechender Halbleiter für optoelektronische Anwendungen optimiert werden, so kann man die Elektronen darin mit einem ersten Laser anregen und danach mit einem zweiten Laser beobachten, wie schnell sie aus dem angeregten Energiezustand in den Ursprungszustand zurückkehren. Vielfältige Einsatzmöglichkeiten für das neu entwickelte Detektorsystem bietet das ELBE-Zentrum für Hochleistungs-Strahlenquellen in Rossendorf, denn hier sind unter einem Dach zwei Freie-Elektronen-Laser (FELBE) mit Terahertz- bzw. Infrarotstrahlung sowie die neuartige TELBE-Quelle vereint, die den im HZDR verfügbaren Spektralbereich der Terahertz-Strahlung in den nächsten Jahren erheblich erweitern soll.

Die Forschungsarbeiten im HZDR und an der Universität Regensburg werden unter anderem im Schwerpunktprogramm „Graphen“ der Deutschen Forschungsgemeinschaft gefördert.

Publikation:
M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss u.a., Utrafast graphene-based broadband THz detector, in: Applied Physics Letters 103, 021113 (2013), DOI-Link: 10.1063/1.4813621
Weitere Informationen:
_Martin Mittendorff
Institut für Ionenstrahlphysik und Materialforschung im HZDR
Tel.: 0351 260 - 3522 | m.mittendorff@hzdr.de
_Josef Kamann
Institut für Experimentelle und Angewandte Physik an der Universität Regensburg
Tel.: 0941 943 - 2186 | josef.kamann@physik.uni-regensburg.de
Medienkontakte:
_Dr. Christine Bohnet, Pressesprecherin
Tel. 0351 260 - 2450 oder 0160 969 288 56 | c.bohnet@hzdr.de |
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden
_Alexander Schlaak, Pressereferent
Universität Regensburg | Universitätsstraße 31 | 93053 Regensburg
Tel.: 0941 943 - 5566 | Alexander.Schlaak@uni-regensburg.de |
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

Zur Beantwortung dieser wissenschaftlichen Fragen werden Großgeräte mit einzigartigen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon ca. 450 Wissenschaftler inklusive 160 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise