Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung

26.05.2017

Astronomen haben im frühen Universum eine neue Art von Galaxie entdeckt, die bereits weniger als eine Milliarde nach dem Urknall hundert Mal schneller Sterne bildet als unsere Milchstraße. Das könnte einen früheren Befund erklären: eine Population überraschend massereicher Galaxien 1,5 Milliarden Jahre nach dem Urknall, deren Existenz solche Super-Produktivität voraussetzt. Die Beobachtungen zeigen außerdem das früheste bekannte Beispiel verschmelzender Galaxien. Die Ergebnisse von Roberto Decarli vom Max-Planck-Institut für Astronomie und seinen Kollegen werden am 25. Mai in der Fachzeitschrift Nature veröffentlicht.

Als eine Gruppe von Astronomen vor ein paar Jahren im frühen Universum eine neue Sorte ungewöhnlich massereicher Galaxien entdeckte, gab deren schiere Größe – mit hunderten von Milliarden Sternen – ein Rätsel auf. Diese Galaxien sind so weit entfernt, dass wir sie sehen, wie sie ganze anderthalb Milliarden Jahre nach dem Urknall aussahen, als das Universum nur rund 10% so alt war wie heute. Wie konnten sie vom Urknall bis dahin, in einer vergleichsweise kurzen Zeit, bereits so viele Sterne bilden?


Künstlerische Darstellung eines Quasars mit benachbarten verschmelzenden Galaxien.

Bild: MPIA mit Bildmaterial des NASA/ESA-Weltraumteleskops Hubble

Jetzt zeigt ein Zufallsfund einer Astronomengruppe unter der Leitung von Roberto Decarli vom Max-Planck-Institut für Astronomie eine mögliche Lösung auf: eine Population superproduktiver Galaxien im frühesten Universum, weniger als eine Milliarde Jahre nach dem Urknall.

Roberto Decarli sagt: "Wir waren eigentlich auf der Suche nach etwas anderem gewesen: nach Sternentstehungs-Aktivität in den Wirtsgalaxien von Quasaren. In vier Fällen fanden wir allerdings etwas unerwartetes: Nachbargalaxien der Quasare, die mit großer Geschwindigkeit neue Sterne bildeten, hundert Sonnenmassen pro Jahr". Quasare sind eine kurze Phase der Galaxien-Evolution, angetrieben dadurch, das Materie auf das supermassereiche Schwarze Loch im Zentrum einer Galaxie fällt.

Fabian Walter, Leiter des Beobachtungsprogramms mit dem ALMA-Observatorium in Chile, welches zu der Entdeckung führte, sagt: "Es dürfte kein Zufall sein, dass diese produktiven Galaxien so nahe an hellen Quasaren liegen. Quasare entstehen nach heutigem Verständnis in Regionen des Universums, in denen die Materiedichte deutlich größer ist als im Durchschnitt. Dieselben Bedingungen dürften begünstigen, dass Galaxien besonders schnell neue Sterne bilden."

Ob die neu entdeckten Galaxien tatsächlich die Vorläufer ihrer massereichen späteren Verwandten sein und so das kosmische Rätsel lösen können hängt davon ab, wie häufig sie im Universum sind. Dieser Frage wollen sich Decarli und seine Kollegen mit weiteren Beobachtungen widmen.

Die ALMA-Beobachtungen zeigen außerdem eine Galaxienkonfiguration, bei der es sich offenbar um das früheste bekannte Beispiel für zwei miteinander verschmelzende Galaxien handelt. Neben der Entstehung neuer Sterne sind solche Verschmelzungen ein wichtiger Mechanismen für Galaxienwachstum – und die neuen Beobachtungen geben die ersten direkten Hinweise darauf, dass solche Verschmelzungen bereits in den frühesten Stadien der Galaxienevolution stattgefunden haben, weniger als eine Milliarde Jahre nach dem Urknall.

Hintergrundinformationen

Die hier beschriebenen Resultate sind veröffentlicht als Decarli et al., "Rapidly star-forming galaxies adjacent to quasars at z>6" in der Ausgabe vom 25. Mai 2017 der Fachzeitschrift Nature.

Journalisten können über die Webseiten von Nature und über [press@nature.com] Kopien des Fachartikels erhalten.

Die beteiligten MPIA-Forscher sind

Roberto Decarli, Fabian Walter, Bram Venemans, Emanuele Farina, Chiara Mazzucchelli und Hans-Walter Rix

in Zusammenarbeit mit

Eduardo Bañados (Carnegie Observatories, Pasadena), Frank Bertoldi (Universität Bonn), Chris Carilli (NRAO und Cavendish Laboratory, Cambridge), Xiaohui Fan (University of Arizona), Dominik Riechers (Cornell University), Michael A. Strauss (Princeton University), Ran Wang (Universität Peking) und Y. Yang (Korea Astronomy and Space Science Institute).

Kontakt

Dr. Markus Pössel (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
Tel.: (06221) 528-261
E-Mail: pr@mpia.de

Dr. Roberto Decarli (Erstautor)
Max-Planck-Institut für Astronomie
Tel.: (06221) 528-368
E-Mail: decarli@mpia.de

Weitere Informationen:

http://www.mpia.de/aktuelles/wissenschaft/2017-07-galaxien-sternentstehung - Online-Version mit weiteren Informationen und hochaufgelösten Bildern

Dr. Markus Pössel | Max-Planck-Institut für Astronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie