Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie schnell entsteht der elektrische Widerstand?

16.12.2011
Forscher am Max-Born-Institut in Berlin beobachteten die extrem schnelle Entwicklung des elektrischen Widerstandes in einem Halbleiter, indem sie die Bewegung der Elektronen in Echtzeit verfolgten.

Als Sie das erste Mal von elektrischem Strom hörten, haben Sie sich vielleicht gefragt, wie sich die Elektronen in einem Festkörper vom negativen zum positiven Anschluss bewegen. Es ist im Prinzip möglich, dass die Elektronen durch den Festkörper "fliegen", ohne dass sie durch die Atome oder andere Ladungen im Material beeinflusst werden. Unter normalen Bedingungen geschieht dies nicht, da die Elektronen mit den schwingenden Atomkernen oder mit Störstellen zusammenstoßen. Typisch passieren solche Stöße nach einer extrem kurzen Zeit, ca. 100 Femtosekunden (10 hoch -13 Sekunden, ein Zehntel einer billionstel Sekunde). Damit ist die Elektronenbewegung im Material wie eine Bewegung durch eine dichte Menschenmenge, nicht wie ein Lauf eine leere Strasse entlang. Deshalb ist eine typische Elektronengeschwindigkeit nur 1 m/h (nicht km/h!), langsamer als eine Schnecke.


Elektronen (blau) und Löcher (rot) vor dem Anlegen eines elektrischen Feldes...


...und danach. (siehe auch Videoanimation)
Abb. : MBI

Obwohl die Elektronen im Material sehr häufig anstoßen, benötigen solche Stöße eine endliche Zeit. Wenn man sich durch eine Menschenmenge drängelt, gibt es dort manchmal kleine leere Bereiche, in denen man schneller gehen kann. Wenn man die Elektronen bei ihrer Bewegung auf einer sehr schnellen (Femtosekunden) Zeitskala beobachtet, würde man erwarten, dass die Elektronen nach dem Einschalten der Batterie für sehr kurze Zeit ungestört durch das Material fliegen, bevor sie an irgendwas anstoßen. Das ist genau, was Forscher am Max-Born-Institut in Berlin kürzlich getan haben und worüber sie in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters [Band 107, 256602 (2011)] berichten. Extrem kurze Pulse von Terahertz Licht (1 Terahertz = 10 hoch 12 Hz, 1 Billion Schwingungen pro Sekunde) wurden anstelle einer Batterie benutzt (Licht hat wie eine Batterie ein elektrisches Feld), um optisch erzeugte freie Elektronen in einem Stück Galliumarsenid zu beschleunigen.

Die so beschleunigten Elektronen erzeugen ihrerseits ein weiteres elektrisches Feld. Wenn man dieses Feld mit Femtosekunden-Zeitauflösung misst, kann man daraus genau erkennen, was die Elektronen tun. Die Forscher sahen, dass die Elektronen direkt nach dem Einschalten des elektrischen Feldes ungestört beschleunigt wurden, wohingegen sich der Einfluss der Stöße erst nach etwa 300 Femtosekunden bemerkbar machte.

In dem beigefügten Film zeigen wir, was in dem Galliumarsenidkristall passiert. Elektronen (blaue Kugeln) und Löcher (rote Kugeln) zeigen zufällige Wärmebewegungen, bevor der Terahertz-Puls die Probe trifft. Das elektrische Feld (grüner Pfeil) beschleunigt Elektronen und Löcher in entgegengesetzte Richtungen. Im Entstehen des elektrischen Widerstands wird diese Bewegung abgebremst. Dies führt zu einem aufgeheizten Elektron-Loch-Gas, das heißt zu einer schnelleren Wärmebewegung.

Diese Experimente ermöglichten es den Forschern festzustellen, welche Art Stöße hauptsächlich für den elektrischen Widerstand verantwortlich ist. Interessanterweise fanden sie heraus, dass die wichtigsten Stoßpartner nicht atomare Schwingungen sind, sondern positiv geladene Teilchen, sogenannte Löcher. Ein Loch oder Defektelektron ist ein leerer Elektronenzustand im Valenzband des Halbleiters; es hat eine positive Ladung und eine etwa 6-mal so große Masse wie das Elektron. Die optische Anregung eines Halbleiters erzeugt gleichzeitig freie Elektronen und Löcher. Diese werden durch den Terahertz Puls, unsere Batterie, in entgegengesetzte Richtungen bewegt. Da die Löcher verglichen mit den Elektronen eine viel größere Masse haben, bewegen sie sich nur langsam, aber sie stehen den Elektronen im Weg, wodurch diese abgebremst werden.

Das so gewonnene Verständnis der Prozesse, die zu einer Abbremsung von Elektronen führen, kann zukünftig zu effizienterer und schnellerer Elektronik führen und vielleicht zu neuen Tricks, den elektrischen Widerstand zu verringern.

DOI: 10.1103/PhysRevLett.107.256602

Videoanimation:
http://www.fv-berlin.de/news/animation-wanderung-von-elektronen-und-loechern-im-elektrischen-feld/view
Kontakte:
Michael Woerner, Tel: 030-6392 1470, email: woerner@mbi-berlin.de
Klaus Reimann, Tel: 030-6392 1476, email: reimann@mbi-berlin.de
Thomas Elsaesser, Tel.: 030-6392 1400, email: elsasser@mbi-berlin.de

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.mbi-berlin.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie