Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnappschüsse von getriebenen Elektronen

14.03.2011
Physikern des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik ist erstmals die Echtzeit-Beobachtung von lasererzeugten Teilchen-Plasmawellen und die durch sie beschleunigten Elektronenpakete gelungen. Sie erläutern ihre Ergebnisse im Wissenschaftsmagazin Nature Physics (13. März 2011).

Schwarmverhalten gibt es nicht nur bei Vögeln, Insekten oder Fischen, auch der Mikrokosmos hat ähnliche Phänomene zu bieten. Einem Team um Ferenc Krausz und seinen Mitarbeitern Laszlo Veisz und Alexander Buck vom Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ) und an der Ludwig-Maximilians-Universität (LMU) ist es jetzt in Zusammenarbeit mit Kollegen der Universität Jena erstmals gelungen, laserbeschleunigte Schwärme von Elektronen im Zusammenspiel mit einer Plasmawelle, die aus positiv geladenen Heliumionen und weiteren Elektronen besteht, zu beobachten.


Künstlerische Darstellung der lasergetriebenen Elektronenbeschleunigung. Ein intensiver Lichtpuls (gelb-orange) erzeugt eine Plasmawelle (weiße modulierte Oberfläche) aus schwingenden Elektronen und stationären Heliumionen. Einige Elektronen lösen sich daraus und fliegen als Schwarm mit nahezu Lichtgeschwindigkeit (rote Kügelchen) hinter dem Laserpuls her. Grafik: Christian Hackenberger


Aus einer kleinen Düse strömen Heliumatome, die von einem Laserpuls ionisiert werden. Dabei entsteht aus Heliumionen und freien Elektronen ein Plasmakanal. In diesem Kanal wird ein Teil der Elektronen bis auf Lichtgeschwindigkeit von dem Lichtblitz beschleunigt. Foto: Thorsten Naeser

Damit haben die Physiker eine Echtzeit-Dokumentation erstellt, wie sich unter Einwirkung von starken Laserpulsen Elektronen zu Bündeln organisieren und sich während des Fluges in ihrem Windschatten verhalten. Die Erkenntnisse erleichtern die Entwicklung von neuen Elektronen- und Lichtquellen, mit denen man etwa die Struktur von Atomen und Molekülen erkundet. In der Medizin helfen die Kenntnisse, neue Röntgenquellen zu entwickeln, deren Auflösung weit besser sein wird als bei aktuellen Geräten.

Wenn kurze Laserpulse zum Beispiel auf Heliumatome treffen, wird deren Struktur gehörig durcheinander gewirbelt. Ist das Licht stark genug, schlägt es aus den Atomen Elektronen heraus, die Heliumatome werden zu Ionen. Die Mischung aus Elektronen und Ionen nennt man Plasma, das unter starkem Lichteinfluss Wellenstrukturen annehmen kann. In der Laserphysik nützt man diesen Prozess unter speziellen Bedingungen um einen kleinen Teil der Elektronen rasant bis nahe der Lichtgeschwindigkeit zu beschleunigen und zu kontrollieren.

Einem Team vom Labor für Attosekundenphysik am MPQ und an der LMU ist es nun in Kooperation mit Physikern der Uni Jena gelungen, die mit starkem Laserlicht erzeugten Elektronenbündel zusammen mit ihrer treibenden Plasmawelle zu fotografieren.

Bei ihren Experimenten fokussieren die Laserphysiker einen Laserpuls auf eine Gasdüse, aus der die Heliumatome strömen. Der Puls dauert nur wenige Femtosekunden (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde, 10-15 Sekunden). Der Lichtblitz besteht aus wenigen Wellenzyklen und rund einer Milliarde Milliarden Lichtteilchen (Photonen). Seine höchste Leistung ist auf einen sehr kurzen Moment innerhalb des Lichtblitzes und eine winzige Fläche komprimiert. Der hochintensive Laserpuls reißt die Elektronen aus den Atomen. In diesem Cocktail sind die Elektronen viel leichter als die Helium-Atomrümpfe, dadurch werden sie zur Seite gedrängt.

Während der Laserpuls über das System hinwegfegt, bleiben die Ionen stationär, die freigewordenen Elektronen oszillieren um einen Ort. Zusammen bilden die Teilchen eine Plasmawelle. Eine Schwingung dieser Struktur dauert rund 20 Femtosekunden.

In der Plasmawelle bilden sich gigantische elektrische Felder, die 1000 Mal stärker sind als jene, die in den größten Teilchenbeschleunigern der Welt erzeugt werden. Ein kleiner Teil der Elektronen macht sich die Felder zunutze, fliegt als Schwarm im Windschatten dem Laserpuls hinterher und beschleunigt bis nahe an die Lichtgeschwindigkeit. Jedes Elektron verfügt dabei über fast die gleiche Energie.

Das Phänomen ist der Physik schon lange bekannt und in Experimenten nachgewiesen. Bereits 1979 beschrieb der japanische Laserphysiker Toshiki Tajima den Vorgang. Tajima forscht heute im Exzellenzcluster "Munich-Centre for Advanced Photonics". Bisher waren aber nur Einzelbeobachtungen mit reduzierter Auflösung, entweder des Elektronenschwarms oder der gesamten Plasmawelle möglich.

Den Garchinger Laserphysikern ist die kombinierte Dokumentation mit einer hohen Auflösung der Plasmawelle geglückt. In Schnappschüssen festgehalten wurde der Prozess über den gleichen Lichtpuls, der auch die Elektronen beschleunigt. Den Laserpuls hatten die Physiker zuvor gespalten, sodass ein kleiner Teil davon im rechten Winkel auf das System aus freien Elektronen und Ionen auftraf. Dieses Licht wird an der periodisch angeordneten Plasmawelle gebrochen, wobei sich die Brechung verändert und es zum Teil abgelenkt wird.

"Die Ablenkung und damit die Plasmawelle bilden wir als Helligkeitsunterschiede mit einer Kamera ab", erläutert Laszlo Veisz, Forschungsgruppenleiter im LAP-Team. Die Forscher erreichen dabei eine einzigartige räumliche und zeitliche Auflösung im Femtosekunden-Bereich. Der Elektronenschwarm produziert zudem Magnetfelder, die die Physiker ebenfalls aufzeichnen und damit seine Position und Dauer bestimmen. Aus beiden Messmethoden ergibt sich schließlich ein Film der Elektronenbeschleunigung.

"Diese verbesserten Kenntnisse der laser-getriebenen Elektronenbeschleunigung helfen uns, neue Röntgenquellen von bisher nicht erreichter Qualität für die Grundlagenforschung aber auch für die Medizin zu entwickeln", erläutert Ferenc Krausz.

Thorsten Naeser | Max-Planck-Institut
Weitere Informationen:
http://www.munich-photonics.de
http://www.attoworld.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen