Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnappschüsse von getriebenen Elektronen

14.03.2011
Physikern des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik ist erstmals die Echtzeit-Beobachtung von lasererzeugten Teilchen-Plasmawellen und die durch sie beschleunigten Elektronenpakete gelungen. Sie erläutern ihre Ergebnisse im Wissenschaftsmagazin Nature Physics (13. März 2011).

Schwarmverhalten gibt es nicht nur bei Vögeln, Insekten oder Fischen, auch der Mikrokosmos hat ähnliche Phänomene zu bieten. Einem Team um Ferenc Krausz und seinen Mitarbeitern Laszlo Veisz und Alexander Buck vom Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ) und an der Ludwig-Maximilians-Universität (LMU) ist es jetzt in Zusammenarbeit mit Kollegen der Universität Jena erstmals gelungen, laserbeschleunigte Schwärme von Elektronen im Zusammenspiel mit einer Plasmawelle, die aus positiv geladenen Heliumionen und weiteren Elektronen besteht, zu beobachten.


Künstlerische Darstellung der lasergetriebenen Elektronenbeschleunigung. Ein intensiver Lichtpuls (gelb-orange) erzeugt eine Plasmawelle (weiße modulierte Oberfläche) aus schwingenden Elektronen und stationären Heliumionen. Einige Elektronen lösen sich daraus und fliegen als Schwarm mit nahezu Lichtgeschwindigkeit (rote Kügelchen) hinter dem Laserpuls her. Grafik: Christian Hackenberger


Aus einer kleinen Düse strömen Heliumatome, die von einem Laserpuls ionisiert werden. Dabei entsteht aus Heliumionen und freien Elektronen ein Plasmakanal. In diesem Kanal wird ein Teil der Elektronen bis auf Lichtgeschwindigkeit von dem Lichtblitz beschleunigt. Foto: Thorsten Naeser

Damit haben die Physiker eine Echtzeit-Dokumentation erstellt, wie sich unter Einwirkung von starken Laserpulsen Elektronen zu Bündeln organisieren und sich während des Fluges in ihrem Windschatten verhalten. Die Erkenntnisse erleichtern die Entwicklung von neuen Elektronen- und Lichtquellen, mit denen man etwa die Struktur von Atomen und Molekülen erkundet. In der Medizin helfen die Kenntnisse, neue Röntgenquellen zu entwickeln, deren Auflösung weit besser sein wird als bei aktuellen Geräten.

Wenn kurze Laserpulse zum Beispiel auf Heliumatome treffen, wird deren Struktur gehörig durcheinander gewirbelt. Ist das Licht stark genug, schlägt es aus den Atomen Elektronen heraus, die Heliumatome werden zu Ionen. Die Mischung aus Elektronen und Ionen nennt man Plasma, das unter starkem Lichteinfluss Wellenstrukturen annehmen kann. In der Laserphysik nützt man diesen Prozess unter speziellen Bedingungen um einen kleinen Teil der Elektronen rasant bis nahe der Lichtgeschwindigkeit zu beschleunigen und zu kontrollieren.

Einem Team vom Labor für Attosekundenphysik am MPQ und an der LMU ist es nun in Kooperation mit Physikern der Uni Jena gelungen, die mit starkem Laserlicht erzeugten Elektronenbündel zusammen mit ihrer treibenden Plasmawelle zu fotografieren.

Bei ihren Experimenten fokussieren die Laserphysiker einen Laserpuls auf eine Gasdüse, aus der die Heliumatome strömen. Der Puls dauert nur wenige Femtosekunden (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde, 10-15 Sekunden). Der Lichtblitz besteht aus wenigen Wellenzyklen und rund einer Milliarde Milliarden Lichtteilchen (Photonen). Seine höchste Leistung ist auf einen sehr kurzen Moment innerhalb des Lichtblitzes und eine winzige Fläche komprimiert. Der hochintensive Laserpuls reißt die Elektronen aus den Atomen. In diesem Cocktail sind die Elektronen viel leichter als die Helium-Atomrümpfe, dadurch werden sie zur Seite gedrängt.

Während der Laserpuls über das System hinwegfegt, bleiben die Ionen stationär, die freigewordenen Elektronen oszillieren um einen Ort. Zusammen bilden die Teilchen eine Plasmawelle. Eine Schwingung dieser Struktur dauert rund 20 Femtosekunden.

In der Plasmawelle bilden sich gigantische elektrische Felder, die 1000 Mal stärker sind als jene, die in den größten Teilchenbeschleunigern der Welt erzeugt werden. Ein kleiner Teil der Elektronen macht sich die Felder zunutze, fliegt als Schwarm im Windschatten dem Laserpuls hinterher und beschleunigt bis nahe an die Lichtgeschwindigkeit. Jedes Elektron verfügt dabei über fast die gleiche Energie.

Das Phänomen ist der Physik schon lange bekannt und in Experimenten nachgewiesen. Bereits 1979 beschrieb der japanische Laserphysiker Toshiki Tajima den Vorgang. Tajima forscht heute im Exzellenzcluster "Munich-Centre for Advanced Photonics". Bisher waren aber nur Einzelbeobachtungen mit reduzierter Auflösung, entweder des Elektronenschwarms oder der gesamten Plasmawelle möglich.

Den Garchinger Laserphysikern ist die kombinierte Dokumentation mit einer hohen Auflösung der Plasmawelle geglückt. In Schnappschüssen festgehalten wurde der Prozess über den gleichen Lichtpuls, der auch die Elektronen beschleunigt. Den Laserpuls hatten die Physiker zuvor gespalten, sodass ein kleiner Teil davon im rechten Winkel auf das System aus freien Elektronen und Ionen auftraf. Dieses Licht wird an der periodisch angeordneten Plasmawelle gebrochen, wobei sich die Brechung verändert und es zum Teil abgelenkt wird.

"Die Ablenkung und damit die Plasmawelle bilden wir als Helligkeitsunterschiede mit einer Kamera ab", erläutert Laszlo Veisz, Forschungsgruppenleiter im LAP-Team. Die Forscher erreichen dabei eine einzigartige räumliche und zeitliche Auflösung im Femtosekunden-Bereich. Der Elektronenschwarm produziert zudem Magnetfelder, die die Physiker ebenfalls aufzeichnen und damit seine Position und Dauer bestimmen. Aus beiden Messmethoden ergibt sich schließlich ein Film der Elektronenbeschleunigung.

"Diese verbesserten Kenntnisse der laser-getriebenen Elektronenbeschleunigung helfen uns, neue Röntgenquellen von bisher nicht erreichter Qualität für die Grundlagenforschung aber auch für die Medizin zu entwickeln", erläutert Ferenc Krausz.

Thorsten Naeser | Max-Planck-Institut
Weitere Informationen:
http://www.munich-photonics.de
http://www.attoworld.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik