Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnappschüsse von getriebenen Elektronen

14.03.2011
Physikern des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik ist erstmals die Echtzeit-Beobachtung von lasererzeugten Teilchen-Plasmawellen und die durch sie beschleunigten Elektronenpakete gelungen. Sie erläutern ihre Ergebnisse im Wissenschaftsmagazin Nature Physics (13. März 2011).

Schwarmverhalten gibt es nicht nur bei Vögeln, Insekten oder Fischen, auch der Mikrokosmos hat ähnliche Phänomene zu bieten. Einem Team um Ferenc Krausz und seinen Mitarbeitern Laszlo Veisz und Alexander Buck vom Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ) und an der Ludwig-Maximilians-Universität (LMU) ist es jetzt in Zusammenarbeit mit Kollegen der Universität Jena erstmals gelungen, laserbeschleunigte Schwärme von Elektronen im Zusammenspiel mit einer Plasmawelle, die aus positiv geladenen Heliumionen und weiteren Elektronen besteht, zu beobachten.


Künstlerische Darstellung der lasergetriebenen Elektronenbeschleunigung. Ein intensiver Lichtpuls (gelb-orange) erzeugt eine Plasmawelle (weiße modulierte Oberfläche) aus schwingenden Elektronen und stationären Heliumionen. Einige Elektronen lösen sich daraus und fliegen als Schwarm mit nahezu Lichtgeschwindigkeit (rote Kügelchen) hinter dem Laserpuls her. Grafik: Christian Hackenberger


Aus einer kleinen Düse strömen Heliumatome, die von einem Laserpuls ionisiert werden. Dabei entsteht aus Heliumionen und freien Elektronen ein Plasmakanal. In diesem Kanal wird ein Teil der Elektronen bis auf Lichtgeschwindigkeit von dem Lichtblitz beschleunigt. Foto: Thorsten Naeser

Damit haben die Physiker eine Echtzeit-Dokumentation erstellt, wie sich unter Einwirkung von starken Laserpulsen Elektronen zu Bündeln organisieren und sich während des Fluges in ihrem Windschatten verhalten. Die Erkenntnisse erleichtern die Entwicklung von neuen Elektronen- und Lichtquellen, mit denen man etwa die Struktur von Atomen und Molekülen erkundet. In der Medizin helfen die Kenntnisse, neue Röntgenquellen zu entwickeln, deren Auflösung weit besser sein wird als bei aktuellen Geräten.

Wenn kurze Laserpulse zum Beispiel auf Heliumatome treffen, wird deren Struktur gehörig durcheinander gewirbelt. Ist das Licht stark genug, schlägt es aus den Atomen Elektronen heraus, die Heliumatome werden zu Ionen. Die Mischung aus Elektronen und Ionen nennt man Plasma, das unter starkem Lichteinfluss Wellenstrukturen annehmen kann. In der Laserphysik nützt man diesen Prozess unter speziellen Bedingungen um einen kleinen Teil der Elektronen rasant bis nahe der Lichtgeschwindigkeit zu beschleunigen und zu kontrollieren.

Einem Team vom Labor für Attosekundenphysik am MPQ und an der LMU ist es nun in Kooperation mit Physikern der Uni Jena gelungen, die mit starkem Laserlicht erzeugten Elektronenbündel zusammen mit ihrer treibenden Plasmawelle zu fotografieren.

Bei ihren Experimenten fokussieren die Laserphysiker einen Laserpuls auf eine Gasdüse, aus der die Heliumatome strömen. Der Puls dauert nur wenige Femtosekunden (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde, 10-15 Sekunden). Der Lichtblitz besteht aus wenigen Wellenzyklen und rund einer Milliarde Milliarden Lichtteilchen (Photonen). Seine höchste Leistung ist auf einen sehr kurzen Moment innerhalb des Lichtblitzes und eine winzige Fläche komprimiert. Der hochintensive Laserpuls reißt die Elektronen aus den Atomen. In diesem Cocktail sind die Elektronen viel leichter als die Helium-Atomrümpfe, dadurch werden sie zur Seite gedrängt.

Während der Laserpuls über das System hinwegfegt, bleiben die Ionen stationär, die freigewordenen Elektronen oszillieren um einen Ort. Zusammen bilden die Teilchen eine Plasmawelle. Eine Schwingung dieser Struktur dauert rund 20 Femtosekunden.

In der Plasmawelle bilden sich gigantische elektrische Felder, die 1000 Mal stärker sind als jene, die in den größten Teilchenbeschleunigern der Welt erzeugt werden. Ein kleiner Teil der Elektronen macht sich die Felder zunutze, fliegt als Schwarm im Windschatten dem Laserpuls hinterher und beschleunigt bis nahe an die Lichtgeschwindigkeit. Jedes Elektron verfügt dabei über fast die gleiche Energie.

Das Phänomen ist der Physik schon lange bekannt und in Experimenten nachgewiesen. Bereits 1979 beschrieb der japanische Laserphysiker Toshiki Tajima den Vorgang. Tajima forscht heute im Exzellenzcluster "Munich-Centre for Advanced Photonics". Bisher waren aber nur Einzelbeobachtungen mit reduzierter Auflösung, entweder des Elektronenschwarms oder der gesamten Plasmawelle möglich.

Den Garchinger Laserphysikern ist die kombinierte Dokumentation mit einer hohen Auflösung der Plasmawelle geglückt. In Schnappschüssen festgehalten wurde der Prozess über den gleichen Lichtpuls, der auch die Elektronen beschleunigt. Den Laserpuls hatten die Physiker zuvor gespalten, sodass ein kleiner Teil davon im rechten Winkel auf das System aus freien Elektronen und Ionen auftraf. Dieses Licht wird an der periodisch angeordneten Plasmawelle gebrochen, wobei sich die Brechung verändert und es zum Teil abgelenkt wird.

"Die Ablenkung und damit die Plasmawelle bilden wir als Helligkeitsunterschiede mit einer Kamera ab", erläutert Laszlo Veisz, Forschungsgruppenleiter im LAP-Team. Die Forscher erreichen dabei eine einzigartige räumliche und zeitliche Auflösung im Femtosekunden-Bereich. Der Elektronenschwarm produziert zudem Magnetfelder, die die Physiker ebenfalls aufzeichnen und damit seine Position und Dauer bestimmen. Aus beiden Messmethoden ergibt sich schließlich ein Film der Elektronenbeschleunigung.

"Diese verbesserten Kenntnisse der laser-getriebenen Elektronenbeschleunigung helfen uns, neue Röntgenquellen von bisher nicht erreichter Qualität für die Grundlagenforschung aber auch für die Medizin zu entwickeln", erläutert Ferenc Krausz.

Thorsten Naeser | Max-Planck-Institut
Weitere Informationen:
http://www.munich-photonics.de
http://www.attoworld.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie

Speicherdauer von Qubits für Quantencomputer weiter verbessert

09.12.2016 | Physik Astronomie