Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Schaltung für atomare Bits: Das magnetische Moment lässt sich mit der Spitze eines Rastertunnelmikroskops manipulieren

05.11.2009
Feiner geht es nicht: Valeri Stepanyuk vom Max-Planck-Institut für Mikrostrukturphysik in Halle und seine Kollegen können die Magnetisierung einzelner Atome manipulieren.

Mit der Spitze eines Rastertunnelmikroskops schalten sie einzelne Atome von "Spin up" auf "Spin down" um - einfach indem sie den Abstand der Spitze zum Atom ändern. Das magnetische Moment des Spins wirkt wie ein winziger Stabmagnet. Je nachdem, in welche Richtung sein Nordpol weist, kann der Stabmagnet und somit das Atom die "0" oder "1" eines Bits speichern. Heutige Computer, deren Bits Zehntausende von Atomen groß sind, können so wesentlich weiterentwickelt werden. (Physical Review Letters 103, 057202 (2009))


Eine Frage des Abstands: Wenn sich die Spitze eines Rastertunnelmikroskops (RTM) weiter entfernt von einem Atom befindet, richtet sich das magnetische Moment in dem Atom parallel zu demjenigen in der RTM-Spitze aus (links). Bei kürzerem Abstand orientiert es sich entgegengesetzt (rechts). MPI für Mikrostrukturphysik

Kleiner, schneller, mit geringerem Energieverbrauch: Wenn zur Informationsverarbeitung, zum Beispiel auf Computer-Festplatten, nicht die elektrische Ladung sondern der Drehimpuls ("Spin") der Elektronen genutzt wird, sind die Vorteile vielversprechend. Die Arbeit von Valeri Stepanyuk vom Max-Planck-Institut für Mikrostrukturphysik in Halle und seinen Kollegen aus Deutschland, Irland und Frankreich könnten jetzt dazu beitragen, die sogenannte Spintronik erheblich voranzubringen.

Die Wissenschaftler untersuchten ein System aus einzelnen magnetischen Metallatomen, die an einer Kupferoberfläche adsorbiert waren ("Adatome"), und denen sie sich mit der ebenfalls magnetischen Spitze eines Rastertunnelmikroskops (RTM) näherten. Sie benutzten etablierte Rechenverfahren und führten sogenannte ab-initio-Berechnungen aus, also Simulationen, die an keine Messwerte angepasst wurden, sondern in denen sie lediglich Naturkonstanten verwendeten. Auf diese Weise haben sie gezeigt, dass sie durch einfaches Verändern des Abstandes zwischen den Adatomen und der RTM-Spitze einzelne Elektronenspins beeinflussen können.

Entscheidend ist dabei die sogenannte Austauschwechselwirkung. Sie ist ein rein quantenmechanischer Effekt, der beschreibt, wie sich die Spins von RTM-Spitze und Adatom gegenseitig beeinflussen. Wie stark die Austauschwechselwirkung ist und wie sie sich im Detail auswirkt, hängt dabei vom Abstand zwischen RTM-Spitze und Adatom ab. Kommen sich beide sehr nahe, so bewirkt die Austauschwechselwirkung, dass sich die Spins der Adatome entgegengesetzt zum magnetischen Moment der RTM-Spitze ausrichten - in etwa so wie sich zwei Stabmagnete auch nur mit ihren entgegengesetzten Polen, also Nord- und Südpol, nahe zueinander bringen lassen. Ist der Abstand zwischen RTM-Spitze und Adatom hingegen etwas größer, so ist die Austauschwechselwirkung verantwortlich dafür, dass die Adatome dem Herdentrieb folgen: Ihre Spins stellen sich dann parallel zum magnetischen Moment der RTM-Spitze ein.

Der genaue Abstand, bei dem die Austauschwechselwirkung zwischen dem Spin eines Adatoms und der RTM-Spitze von der entgegengesetzten in die parallele Orientierung umschlägt, hängt davon ab, welches Material für die RTM-Spitze und für die Adatome gewählt wird. Die Wissenschaftler haben für die vorliegenden Simulationen eine RTM-Spitze aus Chrom gewählt; bei den Adatomen handelte es sich wahlweise um Chrom, Mangan, Eisen und Kobalt. Die Berechnungen sind allerdings ohne Probleme an andere Materialsysteme anzupassen. Ebenso nahe liegend ist die experimentelle Realisierung, für die bereits eine Kooperation mit Experimentalphysikern geplant ist.

Originalveröffentlichung:

Kun Tao, V.S. Stepanyuk*, W. Hergert, I. Rungger, S. Sanvito, and P. Bruno
Switching a single spin on metal surfaces
Physical Review Letters 103, 057202 (2009)
Weitere Informationen erhalten Sie von:
Dr. Valeri Stepanyuk
Max-Planck-Institut für Mikrostrukturphysik, Halle
Tel.: +49 345 5582-645
E-Mail: stepanyu@mpi-halle.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-halle.de
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften