Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schalter aus einem Atom

02.09.2013
Konstanzer Physikern gelingt der Nachweis der Informationsspeicherung durch elektrische Manipulation eines einzelnen Atoms

Die Miniaturisierung der Mikroelektronik führt zu immer kleineren Strukturen. Seit einigen Jahren lassen sich mit verschiedenen Techniken Schaltelemente herstellen, deren Funktionsweise in der Beeinflussung einzelner Atome vermutet wird.

Dass die Funktion eines solchen Schalters tatsächlich auf der Umlagerung eines einzelnen Atoms beruhen kann, konnte die Arbeitsgruppe der Konstanzer Experimentalphysikerin Prof. Dr. Elke Scheer zusammen mit Kollegen aus der Theoretischen Physik nun nachweisen.

Dies gelang durch die genaue Analyse der Transporteigenschaften bei tiefen Temperaturen. Neu ist auch das einfache Konzept des Schalters: Für die Schaltung des Stromes sind nicht die im Transistor üblichen drei Elektroden nötig, sondern nur zwei, was die Herstellung wesentlich vereinfacht. Die Ergebnisse sind in der aktuellen Ausgabe der Zeitschrift „Nature Nanotechnology“ erschienen.

Ausgangsmaterial ist ein dünner Aluminiumdraht, bestehend aus einer „Nanobrücke“, die lediglich zwei Mikrometer lang und an ihrer engsten Stelle etwa 100 Nanometer dick ist. Durch Ziehen lässt sich die Brücke bis auf ein Atom verengen, öffnen und wieder zusammenschieben. Dies geschieht mit einem Verfahren, das unter dem Namen „mechanisch kontrollierte Bruchkontakte“ bekannt ist.

Für die Realisierung des Einzelatomschalters und die damit einhergehende Speicherfunktion setzte Dr. Christian Schirm, ein ehemaliger Doktorand in der Gruppe von Elke Scheer, Strompulse ein. Durch die präzise Kontrolle des fließenden Stromes konnte er dafür sorgen, dass sich der Widerstand des Kontaktes ändert. Computergestützte Rechnungen des Doktoranden und theoretischen Physikers Manuel Matt, betreut von Prof. Dr. Peter Nielaba und Juniorprofessor Dr. Fabian Pauly, zeigten, dass sich gemessene Widerstandsänderungen durch die Umlagerung eines einzelnen Atoms erklären lassen.

Das umgelagerte Atom bleibt im neuen Zustand so lange stabil, bis ein Strompuls in umgekehrter Richtung einwirkt. Die aus der Umlagerung resultierende Widerstandsänderung ist noch immer so groß, dass sie sich ohne besondere Anforderungen an die Messelektronik nachweisen lässt. Die Stabilität in beiden Schaltzuständen eröffnet die Möglichkeit, den Schalter als binären Informationsspeicher mit den Zuständen „0“ (hoher Widerstand) und „1“ (niedriger Widerstand) zu verwenden.

In der Mikroelektronik werden solche Speicher üblicherweise durch Transistoren realisiert. Ein Transistor ist ein „three-terminal device“, ein Bauelement, das je eine Elektrode benötigt, durch die der Strom hinein- und wieder herausfließt, sowie eine dritte Zuleitung, die dafür sorgt, dass der Schalter geöffnet und geschlossen wird. „Es ist sehr schwer, diese drei Elektroden auf der Nanoskala zu implementieren“, beschreibt Elke Scheer die Problematik. Das Konstanzer Team, das durch den Gastwissenschaftler Prof. Dr. Juan Carlos Cuevas von der Universität Madrid verstärkt wurde, baute den Schalter stattdessen als „two-terminal device“. Er benötigt also lediglich zwei Zuleitungen, die beide sowohl zum Auslesen des Schaltzustands sowie zu dessen Änderung genutzt werden.

Das Experiment wurde im Bereich von 300 Millikelvin über dem absoluten Nullpunkt durchgeführt. Solch tiefe Temperaturen sind notwendig, weil der Nachweis der Umlagerung eines einzelnen Atoms nur im supraleitenden Zustand gelingt, einem exotischen Materiezustand, in dem die Transporteigenschaften auf charakteristische Weise von der angelegten Spannung abhängen. Der Schalter und Speicher selbst funktioniert jedoch auch bei Raumtemperatur.

Bedingt durch die Notwendigkeit, bei der Speicherung von Informationen immer höhere Geschwindigkeiten zu erzielen, den Materialverbrauch zu reduzieren und die Kosten zu senken, sind Transistoren als Schlüsselelemente bei der Schaltung eines Stromkreises bis heute auf die Größenordnung weniger Nanometer geschrumpft. Der Ein-Atom-Transistor stellt dabei möglicherweise den Informationsspeicher der Zukunft dar. „Wir haben in unserer Arbeit das Grundprinzip demonstriert. Ähnlich wie bei Konzepten für Quantencomputer und Bauelemente aus einzelnen Molekülen wird die Umsetzung dieses Traumes in die Praxis weitere Anstrengungen und innovative Lösungen erfordern“, so Elke Scheer.

Originalveröffentlichung:
C. Schirm, M. Matt, F. Pauly, J. C. Cuevas, P. Nielaba and E. Scheer: A current-driven single-atom memory, Nature Nanotechnology (2013); DOI: 10.1038/nnano.2013.170
Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de
http://www.uni-konstanz.de
Prof. Dr. Elke Scheer
Universität Konstanz
Fachbereich Physik
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 / 88-4712
E-Mail: Elke.Scheer@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten